

The SDA Model v1.0: a Set Theory approach

David Riaño

Research Group on Artificial Intelligence

Rovira i Virgili University

28/02/2007

Tarragona, Spain

- 1 -

Table of Contents

1 Introduction 3

2 Antecedents 5

2.1 Asbru 5

2.2 PROforma 6

2.3 EON 7

3 The SDA* Model: Syntax and Semantics 9

3.1 Formal description 10

3.1.1 The Universe of Discourse 11

3.1.2 Elements 11

3.1.3 Connectors 14

3.2 Sequences and cycles 16

3.3 Non-Determinism 18

3.4 Time 19

3.5 Parallelism 20

4 Construction and execution of health procedures with the SDA* Model 22

4.1 Abstract data type SDA* procedure 22

4.2 Textual representation of SDA* procedures 23

4.3 Execution of SDA* procedures 24

4.4 Examples 25

4.4.1 Representing partial knowledge 26

4.4.2 CSI’s Hypertension Diagnosis and Treatment 27

4.4.3 Comprehensive Assessment K4CARE Procedure 28

4.4.4 The use of Antidepressant Medication in the Elderly 30

4.4.5 Management of Depression with Cognitive Impairment 31

4.4.6 Management of Depression with Dementia 32

4.4.7 Suicide: Risk of Assessment and Management 33

5 Conclusions and Acknowledgements 34

6 References 35

APPENDIX: Schema sda.xsd 36

- 2 -

1 Introduction

K4CARE (IST-2004-026968: Knowledge Based Homecare eServices for an Ageing Europe) is a
Specific Targeted Research or Innovation Project funded within Sixth Framework Programme of
the European Commission (http://ec.europa.eu/research/fp6/) that brings together 13 academic
and industrial institutions from seven countries for a period of three years starting March 2006.

K4CARE addresses the problem of the care of chronic disabled patients at home that, in
modern societies, involves life long treatment under continuous expert supervision that saturate
European national health services and increase related costs.

The project aims at combining the healthcare and the ICT experiences of several western and
eastern EU countries to create, implement, and validate a knowledge-based healthcare model
for the professional assistance to senior patients at home. This new Healthcare Model for home
care will contribute to achieve a European standard supported by the new technologies that
improves the efficiency of the care services for all the citizens in the enlarged Europe.

In the K4CARE project, procedures, formal intervention plans and individual intervention plans
are the basic structures to represent health care procedural knowledge (or know how). In this
setting, a procedure is described as an implementation of a health care service by means of a
combination of actions [2]. For example, the steps that configure a blood analysis or a
comprehensive assessment, or the health care activities involved in comprehensive assessment1.
Formal Intervention Plans (FIPs) are defined as formal structures representing the healthcare
procedures to assist patients suffering form particular ailments or diseases. They contain
indications to all the actors involved in the care process (i.e. healthcare professionals, patients and
relatives, etc.) in order to provide the best coordinated and effective action plan. A FIP on
hypertension, for instance, provides the indications of how to act with a hypertensive patient in
general (see Figure 4). FIPs are general structures that have to be adapted to the particularities of
a patient before it is actionable an applicable to this patient. In the K4CARE project the structure
resulting from this adaptation is called individual intervention plan (IIP).

In the K4CARE Project, these three structures are used to:

• represent the professional worldwide existing "know-how" knowledge within the
K4CARE platform;

• guide the K4CARE services the system offers to the professional users;

• make explicit the way Home Care (HC) must be provided in a growing ageing EU;

• offer a knowledge representation frame in which the new machine learning techniques
developed in the project make explicit the knowledge about HC interventions implicit in

1 Comprehensive assessment of a patient comprises Multi-Dimensional Evaluation plus Clinical Assessment and
Physical Examination (integrating the medical side) and Social Needs and Social Network Assessment (integrating the
social side). It is fully described in section 4.4.3.

- 3 -

the Electronic Health Care Record (these are learned from the procedures regarding
past patients stored in the system);

• offer a representation frame in which procedural knowledge about “pure” pathologies
can be integrated in complex or co-morbid pathologies;

• personalize the care to particular patients, having into account their specific
characteristics;

• develop a family of FIPs representing procedural knowledge about the treatments of
the syndromes targeted in the K4CARE project;

• adapt to a common representation several clinical guidelines already published by
international healthcare organizations as the National Library of Medicine and the
National Guideline Clearinghouse in the USA, the New Zealand Guidelines Group, the
Scottish SIGN, etc.;

• use knowledge engineering methods to create new formal representations for
conditions and diseases relevant in the project that do not have any trustable treatment
published or known. These FIPs will integrate the experiences in the treatment of such
cases by all the healthcare partners of the K4CARE consortium, and

• exploit the data in the EHC in order to induce general FIPs from individual patient
treatments throughout a long time period.

This paper introduces the SDA* Model v1.0 as an effective framework to formalize
procedures, FIPs, and IIPs in the K4CARE project. First, section 2 will broadly introduce three
languages capable of representing FIPs: Asbru, PROforma, and EON; together with some
drawbacks that justify the deployment of the new SDA* model. In section 3, the SDA* model is
introduced in a formal way. Section 4 contains the proposed interface to construct and execute
procedural knowledge under the SDA* model, and also a list of examples. Section 5 contains the
conclusions of the work and the acknowledgements. Section 6 displays the list of references.

The document contains an Appendix describing the XML Schema of the SDA* model.

- 4 -

2 Antecedents

This section introduces three successful approaches to represent Clinical Practice Guidelines.
Most of the content of this section is taken literally from [1] and from the websites of the three
languages discussed. The languages are described in three separate subsections, each one
containing a brief history of the language, the recommended papers describing the language, the
elements for structural description and time management, and the drawbacks when they are
considered to represent FIPs in the K4CARE project.

2.1 Asbru

The Asgaard Project (www.asgaard.tuwien.ac.at) is a project of the Information Engineering
Group, a part of the Information and Software Engineering Group (IFS) of the Institute of Software
Technology and Interactive Systems (ISIS) at the Faculty of Informatics of the Vienna University of
Technology in collaboration with the Austrian Research Institute for Artificial Intelligence (OFAI),
and the Stanford Medical Informatics at Stanford University. The aim of the project is to design a
set of tasks that support the design and the execution of skeletal plans by a human executing
agent other than the original plan designer. Skeletal plans are a powerful way to reuse existing
domain-specific procedural knowledge, but leave room for execution-time flexibility to achieve
particular goals. Asbru is the language to represent skeletal plans in Asgaard.

Recommended publications: historical paper [9], formal introduction to the language and time
management [7], user’s guide [10].

Asbru is the time-oriented, intention-based, skeletal plan-specification representation
language in the Asgaard project to represent clinical guidelines and protocols in XML. Asbru can
be used to express clinical protocols as skeletal plans that can be instantiated for every patient. It
was designed specific for the set of plan-management tasks. Asbru enables the designer to
represent both the prescribed actions of a skeletal plan and the knowledge roles required by the
various problem-solving methods for performing the intertwined supporting subtasks.

Asbru distinguishes between a declarative data abstraction part and a procedural hierarchy of
plans. The data abstraction specification consists of a set of parameter definitions. Each of the
plans in the plan hierarchy consists of a name, a set of arguments, a time annotation (representing
the temporal scope of the plan), preferences, intentions, conditions, effects, and plan body. Only
name and plan body are mandatory.

Arguments are values passed from the invoking or calling plan (called parent) to the invoked
or called plan (called child); preferences describe the costs, resource constraints, and responsible
actor; intentions are high-level goals of the plan represented by temporal patterns of actions and
states that should be maintained, achieved or avoided; conditions mediate the changes between
plan states whose normal evolution is (a) wait for the plan to be considered, (b) fulfill the filter
precondition, (c) become activated, (d) complete the plan unless the abort or the suspend condition

- 5 -

is fulfilled first, in which case the plan becomes aborted or delayed until a reactivate condition
holds, and (d) terminate the plan; effects describe the possible consequences of plans as a
relationship between plan arguments and measurable parameters by means of mathematical
functions or in a qualitative way, and body contains set of plans to be executed in a particular way.
Asbru distinguishes among four types of plans: in sequence (one after the other), in parallel
(simultaneously), in any order (only one at a time), and unordered (anyone at a time).

An important part in specifying the complex temporal aspects of skeletal plans are time
annotations. As Figure 1 schematizes, time annotation specifies four points in time relative to a
reference point (which can be a specific or abstract point in time, or a state transition of a plan): the
earliest starting shift (ESS), latest starting shift (LSS), earliest finishing shift (EFS) and latest
finishing shift (LFS). Two durations can also be defined: The minimum duration (MinDu) and
maximum duration (MaxDu). Together, these data specify the temporal constraints within which an
action must take place, or a condition must be fulfilled for a condition to trigger.

Figure 1. Asbru temporal model.

Asbru is one of the most complete languages to represent procedural knowledge in medicine.
However it is not appropriate for the K4CARE project purposes: on the one hand it is defined as a
task-based framework and not as a language for representing FIPs, therefore the knowledge it
represents is not intuitive to health care professionals. On the other hand, the ability to exploit all
the capabilities of Asbru requires a training that actors in the K4CARE model are not expected to
fulfill. These are the two main reasons that make Asbru not appropriate in the K4CARE project.

2.2 PROforma

PROforma (www.acl.icnet.uk/lab/proforma.html) was developed by the Advanced Computation
Laboratory of the Cancer Research UK. It is a formal knowledge representation language capable
of capturing the structure and content of a clinical guideline in a form that can be interpreted by a
computer. The language forms the basis of a method and a technology for developing and

- 6 -

publishing executable clinical guidelines. Applications built using PROforma software are designed
to support the management of medical procedures and clinical decision making at the point of
care.

Recommended publications: historical paper [4], formal introduction to the language [1].

In PROforma, a guideline application is modelled as a set of tasks and data items. The notion
of a task is central - the PROforma task model (Figure 2) divides from the keystone (generic task)
into four types: plans, decisions, actions and enquiries.

Figure 2. The PROforma task model

Plans are the basic building blocks of a guideline and may contain any number of tasks of any
type, including other plans. Decisions are taken at points where options are presented, e.g.
whether to treat a patient or carry out further investigations. Actions are typically clinical
procedures (such as the administration of an injection) which need to be carried out. Enquiries are
typically requests for further information or data, required before the guideline can proceed.

A particularity of the PROforma language is that none temporal model for managing time in
medicine is explicitly published.

PROforma is an intuitive language to represent procedural knowledge in medicine. However, it
lacks of an explicit representation of temporal constraints which is considered a relevant aspect in
the K4CARE project. PROforma is, therefore, not appropriate to the interest of that project.

2.3 EON

The EON Project (smi-web.stanford.edu/projects/eon/) at Stanford Medical Informatics was
interrupted in 2003 and partially continued with the SAGE Project (www.sageproject.net) that
integrates experiences from the GLIF3 language. The first project created an architecture made up
of a set of software components and a set of interfaces that developers can use to build robust
decision-support systems that reason about guideline-directed care. This architecture is based in
middleware components (reusable, embeddable software modules) such as a temporal database
mediator for handling requests of time-dependent data from a patient database, domain models for
multiple clinical specialties, a generic and extensible ontology for modeling clinical guidelines and
protocols, an eligibility-determination server, a protocol-based therapy planner; and a mediator for
explaining and visualizing the behavior of other EON components.

- 7 -

The EON guideline modelling and execution system forms part of the above mentioned
EON architecture. It includes an extensible suite of models to represent parts of a clinical practice
guideline, domain ontologies, a view of patient data (virtual medical record), and other entities
(e.g. those that define roles in an organization). The guideline model (called the Dharma model)
defines guideline knowledge structures such as eligibility criteria, abstraction definitions, guideline
algorithm, decision models, and recommended actions. The EON guideline execution system
obtains patient data through a specified temporal database manager or from user input, and then
generates recommendations according to the contents of the specific guideline. The encoding of
EON guidelines is done in the Protégé knowledge-engineering environment. In the EON guideline
model, conditional goals (e.g. if patient is diabetic, the target blood pressures are 135/80) are
associated with guidelines and sub-guidelines. The guideline algorithm is represented as a set of
scenarios, action steps, decisions, branches, and synchronisation steps connected by a "followed-
by" relation. Scenarios represent partial characterizations of the state of a patient. Action steps
describe sets of (instantaneous) action specifications that should be carried out. Decisions
represent choices from a set of competing alternatives. EON defines two subclasses of decisions:
decisions resolved by if-then-else conditions and decisions that require making a heuristic choice
from a set of pre-enumerated alternatives. Branches represent concurrent action sequences that
can converge by means of synchronization steps. This EON guideline model appears in Figure 3
together with the EON temporal model that structures the time entities in time points, durations,
and time intervals.

A time point is an instant time that can be an exact date (definite time point), a vague date
(fuzzy time point) or a time with respect to the present time as the concepts of “today”, “now”, etc.
(relative time point). A duration is a quantity of time that can be definite (e.g. 5 days) or fuzzy (e.g.
5 days more or less). A time interval is the time between two time points.

The guideline model and the temporal model interact through the concept of criterion.

Figure 3. Guideline Model and Time model in EON.

EON makes explicit the separation between the representation of FIPs as clinical algorithms in
Protégé, from the tools deployed to interpret and use these representations. Unfortunately, the
interruption in the development and progressive upgrade of EON causes the product to be in an
uncertain dead end situation that affects the confidence of the K4CARE project in this language, in
spite of EON’s adequacy to the FIP representation requirements in the project.

- 8 -

3 The SDA* Model: Syntax and Semantics

SDA stands for State-Decision-Action, SDA* (SDA star) represents the repetition of states,
decisions and actions in order to describe health care procedural knowledge as, for example,
K4CARE procedures, FIPs, or IIPs. In the SDA* model, states are used to describe patient
conditions, situations, or statuses that deserve a particular course of actions which is totally or
partially different from the actions to be followed when the patient is in other state. It provides a
response to the fact that a disease, ailment, pathology, or syndrome can present alternative
degrees of evolution whose treatment must be distinguished. Decisions in the SDA* model
capture the need of procedural knowledge to represent alternative options whose selection
depends on the available information about the patient. In this sense, decisions are able to unify in
a single representation of the procedural knowledge alternative courses of actions that have to be
applied to patients that meet different conditions. Unlike states, decisions are not intended to make
the degree of evolution of a disease explicit, but to orientate a general purpose treatment to the
particular characteristics of the patient; for example in the treatment of hypertension, high-blood-
pressure is a patient condition that may deserve a special treatment and, therefore, if should be
represented as a state. On the contrary, in the treatment of cardiac insufficiency, the patient
condition high-blood-pressure provides information which is relevant to adapt the treatment, but not
to decide on the treatment as a whole, which is based on other conditions as structural-heart-
disease or prior-heart-problems. So in cardiac insufficiency, high-blood-pressure should be taken
as a decision. Finally, actions are the proper treatment steps in the SDA* procedural knowledge
that are performed according to the preceding decisions.

States, decisions, and actions are combined to form a joined representation of how to deal with
a particular health care situation (e.g. a therapy). For example, Figure 4 depicts the FIP that was
published by the Institute for Clinical Systems Improvement (www.icsi.org) to diagnose and treat
hypertension. It is based on the following indications:

i. Patients in the FIP can be in four alternative states:
 a) Screening and identification of elevated BP in patients with diabetes, chronic kidney disease, heart failure, or CAD

(FIP element #1).
 b) Initial assessment completed; i.e. evaluated, accurately staged, and complete risk assessed (FIP element #3).
 c) Hypertension is suspected to be caused by secondary causes (FIP element #5).
 d) Hypertension is under control and a continuing care must start (FIP element #12).

ii. The process is based on three yes-no decisions (one of them appearing twice in the FIP):
 a) Is a second cause of hypertension suspected (FIP element #4)?
 b) Is the blood pressure at goal; i.e. within normality limits (FIP elements #7 and #9)?
 c) Is it a resistant hypertension; i.e. have we fail to achieve a normal BP despite the use of a rational triple-drug

regimen in optimal doses (FIP element #10)?

iii. The actions proposed for the diagnosis and treatment are:
 a) Confirm hypertension on the initial visit, plus two follow-up visits with at least two BP measures at each visit;

following standardized BP measurement techniques, including out of office or home blood pressure measurements
(FIP element #2).

 b) Consider a thiazide-type diuretic as initial therapy in most patients with uncomplicated hypertension (FIP element
#6).

 c) For many patients, two or more drugs in combination may be needed to reach hypertension goals (FIP element #8).
 d) Refer to hypertension consultation (FIP element #11)

- 9 -

1
SC ANING AND

IDE IFICATION OF
ELEVAT BP IN PATIENTS
WITH DIABETES, CHRONIC
KIDNEY DISEASE, HEART

FAILURE OR CAD.

RE
NT
ED

2
CONFIRM ELEVATED
BLOOD PRESSURE

3
CO LETE INITIAL

ASSES ENT: EVALUATE,
ACCUR TELY STAGE AND

COMPLETE RISK
ASSESSMENT.

MP
SM
A

Figure 4. FIP on hype

In the next subsections the SDA* mod
how sequences and cycles are made in t
deal with, and the temporal model which is

3.1 Formal description

The SDA* model is introduced to represe
the next sections, the SDA* model is des
the connections that describe the health ca

yes

4
IS SECONDARY

CAUSE SUSPECTED?

5

ORD R ADDITIONAL E
WORK-UP

CONSIDER REFERRAL

 yes

6
LIFESTYLE MODIFICATIONS

+/- DRUG THERAPY

no

7
BP AT GOAL?

8
CHANGE TREATMENT:

1. INCREASE INITIAL AGENT
2. ADD ANOTHER AGENT FROM A DIFFEREFNT CLASS
3. SUBSTITUTE NEW AGENT

no

no

10
RESISTANT

HYPERTENSION?

yeno

9
BP AT GOAL?

yes

rtension diagnosis and treatment.

el is formally introduced, followed by the explaination of
he model, what non-determinisms the model is able to
 beneath the SDA* model.

nt knowledge on procedural activities in health care. In
cribed in terms of the domain terms, the elements, and
re procedure that is being formalized.

s 6
LIFESTYLE MODIFICATIONS

+/- DRUG THERAPY

5

ORD R ADDITIONAL E
WORK-UP

CONSIDER REFERRAL

- 10 -

3.1.1 The Universe of Discourse2

Given D a particular disease, ailment, pathology, or syndrome, a finite set of terms VD={v1, …, vn}
within the medical domain of D is defined to represent any descriptive or procedural health care
knowledge on D. For example, the terms in the hypertension treatment contained in Figure 4 are
seventeen: screening-and-identification-of-elevated-BP, diabetes, chronic-kidney-disease, heart-
failure, CAD, confirm-elevated-blood-pressure, complete-initial-assessment, secondary-cause-
suspected, additional-work-up, consider-referral, life-style-modifications, drug-therapy, BP-at-goal,
change-treatment, resistant-HT, HT-consult, and HT-continuing-care.

Some of these terms are defined as state terms (i.e. SD⊆VD is the set of state terms). State
terms represent facts that are useful to determine the condition of the patient in the process the
SDA* model is describing. In the SDA* model, a patient condition contains all the terms observed
for the patient in a particular moment (i.e. signs, symptoms, antecedents, taking drugs, secondary
diseases, test results, etc.), therefore it is a subset of the set of terms VD.

The set of decision terms DD⊆VD is the set of all the terms in VD that may be required by
medical experts to choose among alternative medical, surgical, clinical, or management actions
within the treatment of the disease D that the procedure globally describes. State and decision
terms may be used to define any patient condition possible in D.

The set of action terms AD⊆VD is the set of all the terms that represent the medical, surgical,
clinical, or management actions that a doctor may decide on a patient in the course of the
treatment of that patient’s disease or health care procedure.

Though these three sets are not necessarily mutually disjoint, they together must contain all
the feasible terms in D, i.e. VD =SD∪DD∪AD. For example, in the above mentioned case of
hypertension, Shypertension = {screening-and-identification-of-elevated-BP, diabetes, chronic-kidney-
disease, heart-failure, CAD, complete-initial-assessment, secondary-cause-suspected, BP-at-goal,
HT-continuing-care}, Dhypertension = { secondary-cause-suspected, BP-at-goal, resistant-HT}, and
Ahypertension = {confirm-elevated-blood-pressure, additional-work-up, consider-referral, life-style-
modifications, drug-therapy, change-treatment, HT-consult} would be the set of state variables,
decision variables, and action terms, respectively. Observe that the underlined terms are state and
decision terms simultaneously.

3.1.2 Elements

The set of terms VD is used to define the three basic elements of the SDA* model: states,
decisions, and actions. Formally speaking, a state s is a subset of state terms (i.e. s∈℘(SD)); a

decision d is based on a subset D of decision terms (i.e. D∈℘(DD)) and it is defined as a finite list

2 In the first version of the SDA* model the universe of discourse is based on a set of the primitive medical terms that
may be used to construct states, decisions, and actions. In forthcoming versions of the SDA* model, the universe of
discourse will be extended to include Boolean variables (i.e. variables that are allowed to have two values: TRUE or
FALSE), and later multi-valued variables (i.e. variables that can take one out of several possible values). This means that
in this first version the health condition of a patient is defined exclusively by all the signs and symtoms this patient has.

- 11 -

<D; D1, D2, …, Dk>, such that Di∈℘(D) is a decision alternative (or branch), D=D1∪D2∪…∪Dk, and
k ≥0 is the branching factor of the decision. An action a is a subset of action terms (i.e.
a∈℘(AD)).

From the point of view of semantics, a state (or SDA* entry point) describes an abstract patient
condition in which all the terms in the state hold. For example, the state {diabetes, complete-initial-
assessment} represents all the patients with both diabetes and a complete initial assessment, but
which may also have other possible features. From a logical point of view, a state is a conjunction
of state terms. From a functional point of view, the states of a SDA* procedure are the entry points
to that procedure or, in other words, the points where the treatment described can start.

If C ⊆ (SD∪DD) is the current condition of a patient, we say a state s of a SDA* procedure is a

feasible entry point of that patient in that procedure if and only if s ⊆ C. It may happen that one
patient has several feasible entry points for the same SDA* under the same condition. It may also
happen that one or several states are included in other states of the same SDA* (e.g. s1 ⊆s2). In
this case, every time s1 is a feasible entry point, s2 is also a feasible entry point. Empty states are
also possible and they represent states in the SDA* procedure that any patient meets.

Observe that a state s that does not contain a state term v will be a feasible entry point to both
patients whose condition comprises v and patients whose condition does not comprise v (see
Table 1). If we want to change this behavior we have to define two terms for the same health care
concept, one being the negation of the other one (e.g. diabetes and not-diabetes). This way, a
state containing the term not-diabetes (i.e. negation of diabetes) will not be a feasible entry point
for diabetic patients whose condition does not comprise not-diabetes.

 v ∈ PATIENT CONDITION v ∉ PATIENT CONDITION
v ∈ s s is a feasible entry point s is NOT a feasible entry point

v ∉ s s is a feasible entry point s is a feasible entry point

Table 1. Basic logic rule of feasible entry points.

A decision (or SDA* branching point) describes a point of the SDA* where the treatment can
follow alternative courses of action depending on which are the decision terms the treated patient
meets. For example, the set of decision terms D = {stage1-HT, stage2-HT, low-BP, BP-at-goal}
could be used to propose alternative treatments whether the patient is hypertensive (D1 = {stage1-
HT, stage2-HT} ⊆D), hypotensive (D2={low-BP} ⊆D) or none (D3={BP-at-goal} ⊆D-(D1∪D2)). From
a logical point of view, a decision represents a disjunction of conjunctions on a set of decision
terms. From a functional point of view, decisions allow the represented SDA* to be as general and
flexible as to combine several variations on the treatment of a disease, and to make the application
of these variations depend on the particularities of the patient.

If C ⊆ (SD∪DD) is the current condition of a patient and d=< D; D1, D2, …, Dk > a decision

element of a SDA* procedure, we say Di is a feasible branch for that patient if and only if Di ⊆ C.
One or several branches may contain none decision variable; in this case, all these branches are
feasible. It may also happen that in the same decision two or more branches totally or partially
overlap. In the first case (i.e. Di ⊆ Dj), Di will be a feasible branch whenever Dj is feasible, and Dj

- 12 -

will not be a feasible branch if Di is not. In the second case (i.e. (Di ∩ Dj)≠∅) each situation must
be studied separately. Observe that if Di = Dj, both branches are evaluated the same for any
possible patient. Empty conditions are always feasible.

Concerning the branching factor k of a decision, it must be zero, one, or greater than one. An
SDA* decision with a branching factor of zero or one is interpreted as unfinished element, maybe
because at the time of developing of the SDA* there is not health evidence on how to branch
patients at that point of care. A branching factor k=0 transforms a SDA* decision into a dead end
element. A branching factor k=1 acts as a filter of the patients that may proceed with the treatment
at the decision point. A branching factor k=2, allows the construction of SDA* binary decisions as
<D; D1, D-D1>. Observe that binary decisions are not equivalent to IF-THEN-ELSE structures since
any patient with a condition C containing all the decision terms in D will make both branches of the
above decision feasible. Like in the case of the state elements, IF-THEN-ELSE behaviors may be
achieved through the definition of contrary terms (e.g. diabetes and not-diabetes), and the
definition of decisions as <{diabetes, not-diabetes}; {diabetes}, {not-diabetes}>. In this case,
diabetic patients will follow the first branch, and non diabetic patients the second one.

An alternative interpretation of a decision d=< D; D1, D2, …, Dk > is that it is based on a
“fictitious” variable d whose domain (i.e. the values that the variable can take) is D, and each
branch Di is a subset of these possible values. For example, BP=<{stage1-HT, stage2-HT, low-BP,
BP-at-goal}; {stage1-HT, stage2-HT}, {low-BP}, {BP-at-goal}>.

Let us observe that a branch Di=∅ of a decision d is always feasible for any patient arriving to
d. If a patient condition C includes none of the branches of a SDA* decision < D; D1, D2, …, Dk >

(i.e. Di⊄C for all i=1, 2, …, k), then none of the branches is feasible, and the decision becomes a
dead end element of the SDA* procedure for all the patients under that condition. In order to avoid
this situation a SDA* decision can contain an otherwise branch (i.e. < D; D1, …, Dk , otherwise>)
which is feasible only if the patient condition C makes none of other branches feasible. For
example, BP=<{ BP-at-goal }; { BP-at-goal }, otherwise> that represent the decisions #7 and #9 in
the FIP of Figure 4.

An action element (or SDA* action block) describes a group of actions in the SDA* procedure.
These elements do only represent action proposals whose application must be seen out of the
SDA* model. So, if the SDA* suggests the physician to prescribe a beta-blocker it is up to the
physician to decide whether the drug is finally prescribed or not, and it is up to the patient (or some
other person) to make sure that the patient takes the drug. This means that two sequential actions
in the SDA* model do not necessarily represent a sequential execution of the actions in the real
world, but consecutive action proposals within the SDA* procedure.

The SDA* model does not distinguish between instant actions (i.e. those actions with an
immediate end as for example an expert recommendation) and abiding actions (i.e. those actions
which extend in time as for example starting an assessment process that may last several days).
The reason is that actions in the SDA* model represent the launch of the action, regardless
whether this is an instant or an abiding action in the real world. Typical sorts of actions are:
recommendations (e.g. stop-smoking, start-soft-exercise, avoid-salt-in-meals, etc.); prescriptions;
radiographies; analyses; medical, surgical or clinical procedures; specialist consultations;

- 13 -

application of an alternative SDA* procedures, etc. From a functional point of view, action blocks
represent the core elements of the SDA* model since the final purpose of this model is to represent
health care procedures as a combination of actions.

Each action term in an action element has two constraints: the first one (called the set of
petitioners) is on the sort of actors that are allowed to request the action (e.g. only medical
doctors are allowed to prescribe drugs). The second one (called the set of performers) is on the
sort of actors that are allowed to perform the action in the real world (e.g. injecting some drugs can
be restricted to nurses and to medical doctors, but some other drugs can also be injected by the
own patient or some relative). These constraints on the actions permit the description of
collaborative medical treatments in which several professionals may interact. Any petitioner in the
set of petitioners is allowed to requests the action to be executed. Any performer in the set of
performers is allowed to execute the action.

Action blocks are independent of the patient condition; therefore they use to be preceded
either by a state that describes what the state of a patient should be in order to deserve that action,
or by a decision that determines whether the patient meets the features required for the action to
be applied. Empty action blocks have the meaning of “do nothing”, which is the same as not having
the action block in the SDA*.

Flowcharts are used to represent SDA* procedures in a graphical way. Figure 5 shows how
states, decisions, and actions are represented in this sort of flowcharts.

STATE

DECISION

 ACTION

Figure 5. Elements of the SDA* Model.

The correct combination of states, decisions, and actions allows the construction of explicit
health care procedural knowledge within the SDA* model. This combination of elements is made
by means of connectors.

3.1.3 Connectors

This section explains how the SDA* elements introduced in the previous section can be combined
to form proper health care procedures.

In the SDA* model, a connector is defined as an arrow that goes from one element in the
input of the connector (or in-element) to another element in the output of the connector (or out-
element).

From the point of view of the SDA* elements, any state is an in-element of one connector3, but
it may be an out-element of any number of connectors in the FIP (including none). Decisions are
in-elements of as many connectors as the branching factor of the decision, and out-elements of
one or several connectors in the SDA* procedure. Finally, actions are in-elements of one only

3 This constraint will be relaxed with the introduction of type-2 non-determinism in section 3.3.

- 14 -

connector, and out-elements of at least one connector. These restrictions are graphically shown in
Figure 6.

Figure 6. Feasible element connections in the SDA* Model.

In that figure, the up-left state and the bottom-left state describe a situation in which all the
patients whose condition makes the state a feasible entry point evolve following the outgoing
connector. The difference between them is that in the first case the SDA* procedure do not inform
about when a patient can reach that state in the middle of a treatment (i.e. it is an input state of the
health care procedure). In the second case, the state can be either an input state of the health care
procedure for new incoming patients, or an intermediate state which is reached after the
application of any of the elements in the incoming connections of the state.

A decision was defined as a list < D; D1, D2, …, Dk > of sets of decision terms; D being all the
possible terms in the decision, Di a subset of D for all i=1..k, and k the branching factor. Each
alternative Di in the decision is assigned a different outgoing connector of the decision. The
meaning of a decision point is that any patient reaching the decision (by one of the incoming
connectors) may follow any of the outgoing connectors whose Di is contained in the patient
condition (i.e. one of the feasible branches of the decision).

An action block contains all the action terms that are to be suggested to deal with the patient
reaching that element. The up-right actions in Figure 6 describe types of action blocks that are only
reachable from one element in the SDA*. Within this group, the left one describes a terminal action
in which the information of how to proceed after the action is not provided by the health care
procedure. The actions in the bottom are general cases describing action blocks to follow after the
application of any of the elements in the action incoming connectors. They also act as a joint of
several courses of action of the SDA* procedure that converge to stop (action on the left) or that
converge into one single action block to propose the same group of actions and then proceed in
the same way through the action block outgoing connector (action on the right).

STATE

DECISION

…
ACTION ACTION

STATE

…

ACTION

…

ACTION

… …

DECISION

…

- 15 -

Figure 7. SDA sequence.

3.2 Sequences and cycles

The basic structure of the SDA* model is the SDA sequence that connects one state with a
decision and each branch of that decision with an action. Figure 7 represents this basic structure.

The SDA sequence can be simplified with the elimination of one or several of the elements in
the sequence. So, the elimination of the state must be interpreted as if there is not a health care
reason to describe the state of the patient at this point of care (e.g. lack of medical meaning,
medical irrelevance, cause of confusion, disagreement, etc.). Sometimes, the application of a set
of actions is mandatory for all the patients arriving to the SDA sequence. In this case the decision
element is eliminated and only one action block with all the common actions is connected after the
state. Sometimes, a decision element is not enough to arrive to a conclusion about the sort of
actions to carry on or the representation of all the possibilities with a single decision is confusing. In
these cases the action block must be eliminated from the SDA sequence in order to chain several
decisions. All these cases of SDA sequence reduction are depicted at the top of Figure 8.

At the bottom of Figure 8 the cases of elimination of two elements of a SDA sequence are
represented. The left side case describes a situation in which two (or more) states from
consecutive SDA sequences are connected. Although this is a correct sequence, there is not a
clear reason that justifies it since a sequence of states is equivalent to a single state containing the
state terms of all the states in the sequence. The case in the middle represents a sequence that
connects two decisions. This is a common practice in the construction of health care procedures
with the SDA* model. The last case in the bottom-right side represents a sequence of two (or
more) actions of consecutive SDA sequences directly connected. Like it happened with the states
in the first case, this sequence is better replaced by a single action containing all the action terms
of the action blocks involved in the sequence.

DECISION

STATE

…

ACTION

- 16 -

Figure 8. Simplified SDA sequences.

SDA sequences (and their reductions) can be concatenated by means of connectors. Figure 9
shows the most general case of a SDA sequence concatenation where none of the elements in
the SDA sequences have been eliminated.

Figure 9. Concatenation of SDA sequences.

Apart of sequences, the SDA* model can represent cycles. A cycle is defined as a repeated
sequence of elements in a SDA* procedure. Cycles may be used to represent repetitions in a
medical process or jumps to an already previously observed situation in the course of action

DECISION

…

STATE

ACTION

DECISION

…

STATE

ACTION

…

…

DECISION

…

STATE

ACTION

DECISION

…

STATE

ACTION

DECISION

STATE

…

ACTION

DECISION

…

STATE

ACTION

DECISION

…

STATE

ACTION

DECISION

STATE

…

ACTION

- 17 -

followed. Cycles in this model do not have explicit termination conditions; the exit of a cycle occurs
when one of the decisions of the cycle drives the patient to an outgoing connection which is not
part of the cycle.

3.3 Non-Determinism

Determinism is the principle by which every event, act, and decision (effect) is the consequence of
some antecedents (causes). In healthcare, these causes can be medical, surgical, genetic,
environmental, managerial, familiar, social, etc. On the contrary, non-determinism states that
there are events which do not correspond to a cause. Historically, there have been defined three
types of non-determinisms: one that holds that some events are uncaused (e.g. from a practical
point of view, in healthcare, uncaused events are equivalent to events with an unknown unfindable
cause), another one that holds that there are nondeterministically caused events (e.g. a physician
that follows alternative therapies for equivalent cases without an explicit explanation), and the third
one that holds that there are agent-caused events (e.g. external events like the arrival of a patient
whose health condition allows the treatment to start at different points). The SDA* model can deal
with all the above types of non-determinism. As a consequence of this, for the same situation (i.e.
patient condition) a non-deterministic SDA* is able to represent several different interventions with
no support to decide which one should be followed. A non-deterministic SDA* procedure may
propose more than one intervention and it must be the physician the final responsible of the
selection.

Figure 10. Non-Determinism in the SDA* Model.

Figure 10 shows the three sorts of non-determinism in the SDA* model that can be
observed in a SDA* FIP. From left to right, the first case (type-0 non-determinism) describes the
situation in which a patient with a particular condition can match several states at the same time
and therefore be non-deterministically recommended to start one out of several alternative

A,B

A
B
C

B,C

Patient Condition

FIP

X Y

FIP

<{A,B,C};{A,B},{B,C}>

…

X Y

FIP

<{A,B,…};{A,B},…,{A,B}>

…

…

FIP

FIP

- 18 -

interventions. In the second case (type-1 non-determinism), the current condition of a patient can
satisfy several branches of the same decision, and therefore be able to follow any of them. For
example, if the patient condition is {high-blood-pressure, taking-drugs}, then any branch of the sort
{}, {high-blood-pressure}, {taking-drugs}, or {high-blood-pressure, taking-drugs} is a feasible
branch. The last case in the right side of Figure 10 (type-2 non-determinism) describes a situation
in which either a state or an action in the FIP are in-elements of several connectors. Here, the
SDA* procedure introduces two or more alternative paths that patients going out of these elements
may (or may not) non-deterministically follow.

3.4 Time

The time model establishes two sorts of temporal constraints: those which are related to the terms
in a SDA* element and those others related to the connectors. Each term and connector may
optionally have one constraint or not. The time constraints of the terms are of the sort [start, end,
frequency] and they mean that the term is observed from the start time, to the end time with the
frequency indicated. For example, when v = (antidepressant, [3w, 1d, 24h]) is a state term it means
that the state of the patient is conditioned by the fact that “(with respect to the current moment) he
has been taking one antidepressant every day since three weeks ago to one day ago”. Observe
that taking two antidepressant units should be said (twoAntidepressant, [x, y, 24h]) or
(antidepressant, [x, y, 12h]) if the units are taken together or in two doses, respectively. The first
case can also be represented by introducing the term v in the state two times.

If v is a decision term the meaning is equivalent to the question “has the patient been daily
taking one antidepressant between three weeks ago and yesterday?”. But if it is an action term the
meaning is an order of taking that antidepressant starting in the start time and ending in the end
time with the frequency indicated in the frequency value (i.e. a prescription). In this case, start must
be a nearer to the current time than end.

s seconds
m minutes
h hours
d days
w weeks
M months
y years

Table 2. Time units in the SDA* model.

In the SDA* model, this sort of terms with a time constraint are called temporal terms.

The second sort of time constraints in the SDA* model is related to the SDA* connectors and it
has the form [min, max]. They are optional and represent delays (or durations). Both values are
also optional. A connector with such time constraint indicates that the evolution from the in-element
to the out-element of the connector takes between min and max times. If only the min value is
present, it means that the connector can be crossed only if a min interval of time passes. If only the

- 19 -

max value is in the constraint, the meaning is that the connector can be followed not later than a
max interval of time.

The sort of temporal units of the start, end, frequency, min, and max components of the time
constraints are the ones included in Table 2, and any of these values is represented by a natural
number followed by one of these temporal units4. For example, 15s for “fifteen seconds”, 5m for
“five minutes”, 3h for “three hours”, 4d for “four days”, 7w for “seven weeks”, 10M for “ten months”,
and 3y for “three years”.

States and decisions describe past or current aspects of the patient, and therefore the
temporal constraint of start must be bigger than the temporal constraint of the end (e.g. [3d, 2d] or
[1y, 3w]). On the contrary, action elements represent future actions and the start value of a
temporal constraint must be smaller than the temporal constraint of the end (e.g. [1d, 3y] or [1h,
6d]).

3.5 Parallelism

Parallelism is admitted by the SDA* model but in a patient-oriented (instead of a procedure-
oriented) fashion. From the point of view of the patient following a SDA* procedure, this person has
a single treatment in which several evens may concur in time. In this approach parallelism does not
mean that the patient is following several treatments at the same time (this will be a procedure-
oriented approach), but that the actions of the treatment overlap in time.

This idea must be conceived together with the fact that SDA* procedures do not represent the
health care procedures themselves, but the indications of what health actions have to be started
now and, expectedly, in the future. Parallel to the SDA* procedure, the evolution of the real patient
in the real world is what conditions how to apply the SDA* procedure in the next encounter with the
patient. In other words, the SDA* procedure suggests a set of actions according to the current
patient condition, and provides a farther perspective of how the treatment of this patient should be
in the future, based exclusively on the limited current evidence provided by the current state of the
patient and not on the real future evolution of the patient. Of course, this perspective is founded on
both health care knowledge and experiences about the feasible evolutions of patients in the
disease the SDA* procedure is dealing with.

In this context, all the action terms of an action block are launched in parallel, subject to their
respective temporal constraints. In Figure 11 the action terms Ai and Aj, belonging to the same
action block, have a parallel region where both behave simultaneously on the patient. These
actions may also be in parallel to actions as Ak from other action blocks, as the figure also depicts.

4 Other temporal concept as “now”, “birth-time”, and “death-time” are also possible.

- 20 -

Figure 11. Parallel actions in time.

Ak [sk, ek, fk]

Ai [si, ei, fi] Aj [sj, ej, fj] current time
Ai [si, ei, fi] si

sjAj [sj, ej, fj]
m

ei

ej
Parallel Region

Sequential Region

Sequential Region

M
[m,M]

tim
e

sk

ekParallel Region Ak [sk, ek, fk]

- 21 -

4 Construction and execution of health procedures with the SDA* Model

This section introduces the procedures that the SDA* model is able to describe as an abstract data
type (ADT), providing the specification of a basic functional interface to manage the construction of
such health procedures. An XML Schema is proposed that provides the structure to represent
SDA* procedures as XML documents. The ADT functions are used to describe the execution of a
health procedure under the SDA* model. The section finishes with several examples of SDA*
procedures in the K4CARE project.

4.1 Abstract data type SDA* procedure

This section aims at providing a formal proposal about the basic constructors that any system
capable of defining SDA* procedures is recommended to have. This proposal follows the
definitional notation of formal specification of abstract data types [5].

time
&

actors

TIME = λ | NUMBER{ s | m | h | d | w | M | y }
PETITIONERS = Set of ACTOR
PERFORMERS = Set of ACTOR

elements EmptyState: → STATE
InsertTerm: Term × [TIME]3 × STATE → STATE
EmptyBranch: → BRANCH
OtherwiseBranch: → BRANCH
InsertTerm: Term × [TIME]3 × BRANCH → BRANCH
EmptyDecision: → DECISION
InsertBranch: BRANCH × DECISION → DECISION
EmptyAction: → ACTION
InsertTerm: Term × [TIME]3 × PETITIONERS × PERFORMERS × ACTION → ACTION

SDA* EmptySDA*: → SDA*
InsetElement: Element × SDA* → SDA*
InsertConnector: {STATE | ACTION}2 × [TIME]2 × Element × SDA* → SDA*
InsertConnector: BRANCH × DECISION × [TIME]2 × Element × SDA* → SDA*

Table 3. SDA* Abstract data type: basic constructors.

Patient states, branches, and actions are sets containing temporal terms of the form (term,
[time1], [time2], [time3])5, any of the three times being optional; decisions are sets of branches, and
SDA* are sets that contain either states, decisions, actions, or connectors, where connectors can
be elements of the form (sa1, sa2, [time1], [time2]) or (branch, decision, [time1], [time2]), sai standing
for a state or an action.

5 Otherwise branches are an exception. They are branches without terms.

- 22 -

4.2 Textual representation of SDA* procedures

The procedures of the SDA* model can be expressed in textual format. Table 4 shows the body of
the XML Schema to define SDA* procedures as XML files.
...
 <xs:simpleType name="sda_time">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]*[smhdwMy]"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="sda_term">
 <xs:sequence>
 <xs:element name="start" type="sda_time" minOccurs="0"/>
 <xs:element name="end" type="sda_time" minOccurs="0"/>
 <xs:element name="frequency" type="sda_time" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="sda_actionterm">
 <xs:sequence>
 <xs:element name="start" type="sda_time" minOccurs="0"/>
 <xs:element name="end" type="sda_time" minOccurs="0"/>
 <xs:element name="frequency" type="sda_time" minOccurs="0"/>
 <xs:element name="petitioner" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="performer" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string"/>
 </xs:complexType>
 <xs:complexType name="sda_connector">
 <xs:sequence>
 <xs:element name="min" type="xs:time" minOccurs="0"/>
 <xs:element name="max" type="xs:time" minOccurs="0"/>
 <xs:element name="element" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="sda_branch">
 <xs:sequence>
 <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="sda_connector" type="sda_connector"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="sda_state">
 <xs:sequence>
 <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="next" type="sda_connector" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="sda_decision">
 <xs:sequence>
 <xs:element name="sda_branch" type="sda_branch" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="otherwise" type="sda_connector" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="sda_actionblock">
 <xs:sequence>
 <xs:element name="sda_action" type="sda_actionterm" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="next" type="sda_connector" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="sda_procedure">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="sda_state" type="sda_state"/>
 <xs:element name="sda_decision" type="sda_decision"/>
 <xs:element name="sda_action" type="sda_actionblock"/>
 </xs:choice>
 </xs:complexType>
...

Table 4. SDA* XML Schema.

- 23 -

4.3 Execution of SDA* procedures

One of the key aspect to fully understand procedures described under the SDA* model is to know
how they are executed for a particular patient. Before going on, we must recall that these
procedures are formal representations of the general intervention to deal with a particular disease,
ailment, pathology or syndrome. They are not representations of the evolutions of the patients
under such circumstances. This means that applying the indications of a SDA* to a particular
patient does not necessarily imply that this patient will evolve the way the SDA* indicates. This fact
describes a parallel view of the problem at two levels, the level of the course of actions indicated
in the SDA* (medical knowledge) and the level of the evolution of the patients that follow the SDA*
(reality or medical data).

This duality may disturb or confuse the reader. However, this same reader must think of the
SDA* as indications that a particular patient may follow, may not follow, follow in part, or follow
during not enough time; or, also common in medicine, even strictly following the indications, the
patient may evolve unexpectedly.

The practice of medicine is universally based on the encounters between the patients and the
healthcare professionals. In a particular encounter a patient exhibits a specific condition within the
disease he is assisted for. The role of the health care professional in the encounter is to interpret
these signs, symptoms, and the rest of the information provided in order to conclude about the set
of actions to follow (e.g. recommendation, prescription, procedure, etc.).

In the SDA* model, a patient condition is described as a set of temporal terms representing
the patient current condition, including the patient health antecedents. These terms can be state,
decision or action terms. For example, {(ElevatedBloodPressure), (BPAtGoal, [t1,t2,-]),
(Antidepressant, [t3, t4, t5])} is the condition of a patient that has an elevated blood pressure (i.e.
BP≥140/90), but who has had the pressure at goal between the times t1 and t2, and who has been
taking antidepressant between t3 and t4 with a frequency t5.

patient
condition

EmptyCondition: → PCONDITION
InsertTerm: Term × [TIME]3 × PCONDITION → PCONDITION

Table 5. Patient condition abstract data type: basic constructors.

Given a patient condition and a SDA*, both based on the same set of terms, the execution of
that SDA*procedure for that patient starts at any of the states of the SDA* that are feasible entry
points. If it is required, the health care professionals in the encounter can select a subset of all the
alternatives. Each feasible entry point in the selected set starts alternative feasible treatments of
the patient.

A treatment consists of all the action (temporal) terms found in a SDA* path that starts in a
feasible entry point and finishes either in a state that is not a feasible entry point (i.e. the
patient condition must change before evolving in this line) or in a connector with a temporal
range [min, max] with min>0 (i.e. the SDA* procedure sets a temporal break before the
patient treatment can continue). This path is a sequence of SDA* elements, each one being an
out-element of a connector with in-element the pervious element in the sequence. If the in-element
is a decision, all the branches that the patient condition meets (or the branch otherwise if none

- 24 -

meets), i.e. the feasible branch of the decision, can be followed. If an element is non-
deterministically connected to other elements all the non-deterministic connectors can be followed.
In both cases, it is the health care professional who selects the treatment to apply among all the
feasible alternatives supported by the SDA* procedure.

We define a temporal term (v,[t1,t2,t3]) is equally or more restrictive than another
temporal term (v,[t1’,t2’,t3’]) if the following conditions hold:

1. (t1’≤t1) or (t1’ is void).

2. (t2≤t2’) or (t2’ is void) or (t2’ = 0).

3. (t3≤t3’) or (t3 is void)

Given a patient condition, we say a SDA* state is a feasible state if all the terms in the state
can be found in the patient condition and they are equally or more restrictive in the state than in the
patient condition. In a similar way, we say a branch of a SDA* decision is feasible if all the terms in
the branch are in the patient condition contains and they are equally or more restrictive in the
branch than in the patient condition.

For example, a SDA* state {[beta-blocker, 1M, 1w, 1d]} (i.e. patients taking one beta-blocker per day
during the last month until last week) will be feasible for patients that meet condition c1 in Table 6 (more
restrictive), but not feasible for patients meeting conditions c2 (the patient has been taking the drug since
more time than one month ago), c3 (the patient has been taking beta-blockers during the last week, just in
contradiction with the indication of stop taking beta-blockers one week ago pointed out by the state), or c4
(not only the frequency but the duration of medication is shorter).

Provided a decision term [highBloodPressure, 1M, 3d, -] (i.e. true if the patient has got high blood
pressure since one month ago till recently), all the patients meeting conditions c5 or c6 in Table 6 (more
restrictive) will evaluate the decision term to true, but not c7.

Condition Expression Meaning
c1 [beta-blocker, 1y, 1d, 12h] Taking a beta-blocker every twelve hours since one year ago till yesterday.

c2 [beta-blocker, -, 2d, 8h] Taking beta-blocker every eight hours till two days ago (since much time ago).

c3 [beta-blocker, 1w, -, 8h] Taking beta-blocker every eight hours since one week ago (till now).

c4 [beta-blocker, -, -, 3d] Taking beta-blocker every eight hours since much time ago till now.

c5 [highBloodPressure, 2M, 1d, -] Till yesterday, Blood Pressure has been high during the last two months.

c6 [highBloodPressure, 2M, -, -] Blood Pressure has been high during the last two months (and it is now).

c7 [highBloodPressure, 3w, -, -] Blood Pressure has been high during the last three weeks (and it is now).

Table 6. Some examples of temporal terms and meaning.

4.4 Examples

This section contains partial and complete examples of SDA* procedures. The action terms have
been classified into recommendations, prescriptions, radiographies, analyses, procedures,
specialists, FIPs, and any, as Table 7 summarizes.

- 25 -

[RECOMMENDATION]:
[PRESCRIPTION]:
[RADIOGRAPHY]:
[ANALYSIS]:
[PROCEDURE]:
[SPECIALIST]:
[FIP]:
[ANY]:

[REC]:
[PRES]:
[RAD]:
[ANA]:
[PROC]:
[SPEC]:
[FIP]:
[ANY]:

Variable that represents a recommendation of the physician.
Variable that represents a drug prescription.
Variable that represents an order of radiography.
Variable that represents an order of analysis.
Variable that represents the application of a procedure.
Variable that represents the specialist the patient is derived to.
Variable that represents the execution of another FIP.
Variable that represents any sort of action.

Table 7. Sorts of action variables.

The treatment of hypertension in 4.4.2 is taken from the guideline published by the Institute for
Clinical Systems Improvement (www.icsi.org) in the National Guideline Clearinghouse in the USA.
The rest of procedures were taken from the “Consensus Guidelines for Assessment and
Management of Depression in the Elderly“ of the NSW Health Department in Australia. An
exception is presented in subsection 4.4.3, where the K4CARE procedure [6] for Comprehensive
Assessment of homecare patients is represented following the SDA* model.

4.4.1 Representing partial knowledge

Many times clinical practice guidelines contain valuable knowledge that is apparently disconnected
from other pieces of knowledge that may appear in the same guideline. This kind of knowledge is
usually represented as text. This section contains some examples of textual knowledge pieces
extracted from real guidelines and it shows how they could be represented in the SDA* model.

“Medication is likely to be needed where there is any
sustained depressive disorder and when non-
pharmacological strategies are not achieving their
goals”

“Useful signs to indicate commencing medication are:
• Presence of biological signs, disturbed sleep,

appetite and energy changes
• Diurnal variation in mood
• Agitation or retardation
• Depression with any psychotic features.”

STATE VARIABLES: SUSTAINED_DEPRESIVE_DISORDER
 ONGOING_PHARMA_STRATEGY
DECISION VARIABLES: SUCCESSFUL_PHAMA_STRATEGY?
ACTION VARIABLES: MEDICATION

SUCCESSFUL_PH

STATE VARIABL

ACTION VARIAB

BIOLOGICAL_
DISTURBED_

DISTURBED_AP
ENERGY_CHA

 MOOD_VARIA

- 26 -
 SUSTAINED_DEPRESIVE_DISORDER
ONGOING_PHARMA_STRATEGY

otherwise … AMA_STRATEGY?

MEDICATION UNSPECIFIED

ES: BIOLOGICAL_SIGNS
DISTURBED_SLEEP
DISTURBED_APPETITE
ENERGY_CHANGES
MOOD_VARIATION
AGITATION_RETARDATION
PSYCHOTIC_FEATURES
DEPRESSION

LES : START_MEDICATION

SIGNS
SLEEP AGITATION_RETARDATION
PETITE
NGES

 START_MEDICATION

 PSYCHOTIC_FEATURESTION
DEPRESSION

“Admission to hospital can be essential where the
depression:

• Is severe enough to impair reasonable daily
living function and supports cannot be put in
practice

• Has safety issues –suicidal ideas or plans,
psychotic signs, severe psychomotor agitation
or retardation

• Has not responded to fair treatment”

STATE VARIABLES: SUSTAINED_DEPRESIVE_DISORDER
 ONGOING_PHARMA_STRATEGY
DECISION VARIABLES: SUCCESSFUL_PHAMA_STRATEGY?
ACTION VARIABLES: MEDICATION

4.4.2 CSI’s Hypertension Diagnosis and Treatment

The Clinical Algorithm provided by the Institute for Clinical Systems Improvement (ICSI) in Figure 4
that represents the processes of diagnosis and treatment of hypertension is translated to the SDA*
notation. The result is:

 DEPRESSED_PATIENT
ONGOING_TREATMENT

SEVERE_ENOUGH?

ADMISSION
TO

HOSPITAL

HAS_SAFETY_ISSUES? otherwise
HAS_NOT_RESPONDED?

UNSPECIFIED

[PROC]: ConfirmElevatedBloodPressure

[REC]: LifeStyleModifications [PRES]: DrugTherapy

[PROC]: IncreaseInitialAgent

FOUND?

otherwise

SUSPECTED

BP?

otherwise

 RESISTANT HT? [SPEC]: UNSPECIFIED
otherwise

COMPLETE_INITIAL_ASSESSMENT

otherwise

BP≥130/80
HEART_FAILURE

BP≥130/80

SCREENING

 BP≥130/80 CHRONIC_ BP≥140/90 DIABETES KIDNEY_
DISEASE

ORDER_ADDITIONAL_WORK-UP
CONSIDER_REFERRAL

SECONDARY_CAUSE?

AT_GOAL

[PROC]: AddAnotherAgentFromDifferentClass

[PROC]: SubstituyeNewAgent

otherwise

 BP?
AT_GOAL

HT_CONTINUING_CARE

- 27 -

4.4.3 Comprehensive Assessment K4CARE Procedure

In the K4CARE healthcare model [2] comprehensive assessment is a service that comprises multi-
dimensional evaluation plus clinical assessment and physical examination (integrating the medical
side) and social needs and social network assessment (integrating the social side). It is the service
devoted to detect the whole series of patient diseases, conditions and difficulties, from both the
medical and social perspectives. This service is implemented with a procedure that may be
represented in the SDA* model as it follows.

Here, the actions indicate the actor performing the action (i.e. performers) because
comprehensive assessment is a collaborative process achieved with the combined actions
performed by different actors.

[HCP]:
[FD]:
[PC]:
[HN]:
[SW]:
[EU]:
[CCP]:
[ANY]:

Action performed by the Home Care Patient.
Action performed by the Family Doctor.
Action performed by the Physician in Charge of the patient.
Action performed by the Head Nurse.
Action performed by the Social Worker.
Action performed by the Evaluation Unit (nuclear work team).
Action performed by the Continuous Care Provider.
Action performed by any of the K4CARE actors.

Table 8. Sorts of action variables for comprehensive assessment.

- 28 -

[PC]: ReferHCPForCA

 INITIAL

[HN]: ReferHCPForCA

[HN]: AssignsEUMembers

[HN]: SendMessageForAppointment

[HCP]: ConfirmAppointment

 APPOINTED

[EU]: MultiDimensionalEvaluation

[SW]: PerformSocialNeeds
[SW] PerfomSocialNetworkNeeds

[FD]: ClinicalAssessment [PC]: ClinicalAssessment

CLINICAL
ASSESSED

[FD]: PhysicalAssessment [PC]: PhysicalAssessment

PHYSICAL
ASSESSED

 ASSESSED
SOCIAL

[HCP]: ProvideNecessaryInformation

NON-COMPLIANT

[CCP]: ProvideNecessaryInformation

[HN]: PerformCaseManagementProperActions

NON-RELIABLE

otherwise

- 29 -

4.4.4 The use of Antidepressant Medication in the Elderly

[ANY]: ReviewDiagnosis
[PRES]: Antidepressant

[PRES]: Antidepressant

INADEQUATE

NOT_TOLERATED

[ANY]: MaintainEffectiveDose [12 month]

GOOD

[ANY]: ReviewDiagnosis
[PRES]: Antidepressant

iNADEQUATE

[SPEC]: Psychiatrist

NO_RESPONSE

NO_TOLERATED

 NO_ANT
IDEPRESSANT

RESPONSE?

otherwise
 RESPONSE?

NO_RESPONSE

 RESPONSE?

NOT_TOLERATED

CORRECT_DIAGNOSIS
NONE_UNDERLYIN_MEDICAL_CONDITION

NONE_UNTREATED_PSYCHOSOCIAL_STRESSOR
CARER_NOT_DEPRESSED

- 30 -

4.4.5 Management of Depression with Cognitive Impairment

[ANY]: InvestigateForMedConditionsOrDelirium

[PROC]: TreatMedicalCondition
[ANY]: Reassess

MEDICAL CONDITION

[SPEC]: Unspecified
[PROC]: HospitalCare

[PROC]: CompleteDementiaWorkup
[PROC]: NonPharmacologicalStrategiesForDepressedMood

MAJOR_DEPRESSION

FOUND?

DELIRIUM

DEPRESSED
MELANCHOLIC

CONDITION?
SUICIDAL_IDEAS

otherwise

[1 month, 1 month]

 DEPRESSED otherwise CONDITION? UNSPECIFIED

[PRES]: Antidepressant

DEPRESSION_RESOLVED
CONDITION_STABLED

otherwise

[PROC]: ReassessCognitiveStatus CONDITION?

otherwise

UNSPECIFIED

- 31 -

4.4.6 Management of Depression with Dementia

SUDDEN_DECLINE_IN_FUNCTION
DYSPHORIA_(FEELING_TERRIBLE)
LOSS_OF_INTEREST
PSYCHOMOTOR_CHANGE

[PROC]: Investigate&Treat

MEDICAL CONDITION

[SPEC]: Unspecified
[PROC]: HospitalCare

[PROC]: NonPharmacologicalStrategies

ATYPICAL_DEPRESSION
SEVERE_BEHAVIOURAL_DIST

AGRESSION_NOISINESS
REFUSAL_TO_EAT_OR_DRINK
EMOTIONAL_LABILITY
THOUGHTS_OF_DEATH

[1 week, ∅]

otherwise
FOUND?

DEPRESSED
MELANCHOLIC_FEATURES

CONDITION?

DELIRIUM

PAINFUL CONDITION

otherwise

SUICIDAL_IDEAS

UNSPECIFIED

 CONDITION?
DEPRESSED

IS (S)HE?
PSYCHOTIC

SUICIDAL

otherwise DEHYDRATED

MALNOURISED

[∅, 3 month]

otherwise
 CONDITION? UNSPECIFIED

DEPRESSED

[PRES]: AddAntidepressant

- 32 -

4.4.7 Suicide: Risk of Assessment and Management

 UNASSESSED

[PROC]: EvaluatePrecipitatingFactors
[PROC]: EvaluateProtectiveFactorst

EFFECTIVE_RISK

IN_RISK?

otherwise

 LEVEL?[PROC]: RegularReview

UNSPECIFIED

DELIRIUM

LOW

[PROC]: AssignALevelOfRisk

[PROC]:EstablishSafetyNet
[REC]: SetSetpsThePatientToFollow

MODERATE

[REC]: PatientNotToBeLeftAlone
[SPEC]: unspecified [∅,1 day]
[PROC]: TransferToHospital

HIGH

IN_RISK

 RISK_ASSESSED

- 33 -

5 Conclusions and Acknowledgements

The SDA* model is a formal way of representing procedural knowledge in medicine. The first
version of this model has been introduced in the paper and used to describe procedures and
formal intervention plans in the K4CARE project. Parallel to the definition of the model, the
application SDA Lab for the management of SDA* knowledge structures has been developed,
though this tool is not discussed in the paper. The author wants to thank the work done by Joan
Albert López in the development of the SDA Lab, to Miquel Millán and Montse Batet for providing
support in the revision of the XML Schema, also to Dr. Fabio Campana for suggesting the
guidelines and clinical algorithms used as examples in the document.

This work is part of the European Project K4CARE (IST-026968: Knowledge-Based Homecare
eServices for an Ageing Europe) and the Spanish National Research Project HYGIA (TIN2006-
15453-c04).

- 34 -

6 References

[1] Bury J., Fox J., & Sutton D. The PROforma guideline specification language: progress and
prospects. Proceedings of the First European Workshop, Computer-based Support for Clinical
Guidelines and Protocols (EWGLP 2000), Leipzig 13-14 Nov. 2000.

[2] Campana F., Riaño D., et al. D01: The K4CARE Model. 2007.

[3] Consensus Guidelines for Assessment and Management of Depression in the Elderly.
http://mhcs.health.nsw.gov.au/policy/cmh/publications/depression/depression_elderly.pdf

[4] Fox J., Johns N. & Rahmanzadeh A. Disseminating Medical Knowledge-The PROforma
Approach. Artificial Intelligence in Medicine, 14, 1998, 157-181.

[5] Guttag J. Abstract Data Types and the Development of Data Structures. Comm of the ACM
20(6): 396-404, 1977.

[6] K4CARE Project: http://www.k4care.net

[7] Kosara R, Miksch S. Metaphors of Movement: A Visualization and User Interface for Time-
Oriented, Skeletal Plans. Artif Intell Med pp. 111-131, 22(2), 2001.

[8] Mor Peleg, PhD, Samson Tu, MS, Jonathan Bury, MBChB, Paolo Ciccarese, MSc, John Fox,
PhD, Robert A. Greenes, MD, PhD, Richard Hall, MSc, Peter D. Johnson, MBBS, Neill Jones,
MBBS, Anand Kumar, MBBS, Silvia Miksch, PhD, Silvana Quaglini, PhD, Andreas Seyfang,
MSc, Edward H. Shortliffe, MD, PhD, and Mario Stefanelli, PhD. Comparing Computer-
interpretable Guideline Models: A Case-study Approach. J Am Med Inform Assoc. 2003 Jan–
Feb; 10(1): 52–68.

[9] Shahar Y, Miksch S, Johnson P. The Asgaard Project: a task-specific Framework for the
application and critiquing of time-oriented clinical guidelines. Artif Intell Med 1998;14:29–51.

[10] http://www.asgaard.tuwien.ac.at/asbru_7_3/asbru_7.3_reference.pdf

- 35 -

APPENDIX: Schema sda.xsd

Complex types Simple types

sda_actionblock sda_time

sda_actionterm
sda_branch
sda_connector
sda_decision
sda_procedure
sda_state
sda_term

complexType sda_actionblock

diagram

children sda_action next

used by element sda_procedure/sda_action

attributes Name Type Use Default Fixed annotation

id xs:string required

source <xs:complexType name="sda_actionblock">
 <xs:sequence>
 <xs:element name="sda_action" type="sda_actionterm" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="next" type="sda_connector" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>

attribute sda_actionblock/@id

type xs:string

properties isRef 0

use required

source <xs:attribute name="id" type="xs:string" use="required"/>

- 36 -

element sda_actionblock/sda_action

diagram

type sda_actionterm

properties isRef 0

minOcc 0

maxOcc unbounded

content complex

children start end frequency petitioner performer

attributes Name Type Use Default Fixed annotation

name xs:string required

type xs:string

source <xs:element name="sda_action" type="sda_actionterm" minOccurs="0" maxOccurs="unbounded"/>

element sda_actionblock/next

diagram

type sda_connector

- 37 -

properties isRef 0

minOcc 0

maxOcc 1

content complex

children min max element

source <xs:element name="next" type="sda_connector" minOccurs="0"/>

complexType sda_actionterm

diagram

children start end frequency petitioner performer

used by element sda_actionblock/sda_action

attributes Name Type Use Default Fixed annotation

name xs:string required

type xs:string

source <xs:complexType name="sda_actionterm">
 <xs:sequence>
 <xs:element name="start" type="sda_time" minOccurs="0"/>
 <xs:element name="end" type="sda_time" minOccurs="0"/>
 <xs:element name="frequency" type="sda_time" minOccurs="0"/>
 <xs:element name="petitioner" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="performer" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string"/>
</xs:complexType>

attribute sda_actionterm/@name

type xs:string

properties isRef 0

use required

source <xs:attribute name="name" type="xs:string" use="required"/>

- 38 -

attribute sda_actionterm/@type

type xs:string

properties isRef

source <xs:attribute name="type" type="xs:string"/>

element sda_actionterm/start

diagram

type sda_time

properties isRef 0

minOcc 0

maxOcc 1

content simple

facets pattern [0-9]*[smhdwMy]

source <xs:element name="start" type="sda_time" minOccurs="0"/>

element sda_actionterm/end

diagram

type sda_time

properties isRef 0

minOcc 0

maxOcc 1

content simple

facets pattern [0-9]*[smhdwMy]

source <xs:element name="end" type="sda_time" minOccurs="0"/>

element sda_actionterm/frequency

diagram

type sda_time

properties isRef 0

minOcc 0

- 39 -

maxOcc 1

content simple

facets pattern [0-9]*[smhdwMy]

source <xs:element name="frequency" type="sda_time" minOccurs="0"/>

element sda_actionterm/petitioner

diagram

type xs:string

properties isRef 0

minOcc 0

maxOcc unbounded

content simple

source <xs:element name="petitioner" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

element sda_actionterm/performer

diagram

type xs:string

properties isRef 0

minOcc 0

maxOcc unbounded

content simple

source <xs:element name="performer" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

complexType sda_branch

diagram

children sda_term sda_connector

used by element sda_decision/sda_branch

source <xs:complexType name="sda_branch">
 <xs:sequence>
 <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="sda_connector" type="sda_connector"/>
 </xs:sequence>
</xs:complexType>

- 40 -

element sda_branch/sda_term

diagram

type sda_term

properties isRef 0

minOcc 0

maxOcc unbounded

content complex

children start end frequency

attributes Name Type Use Default Fixed annotation

name xs:string required

source <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>

element sda_branch/sda_connector

diagram

type sda_connector

properties isRef 0

content complex

children min max element

source <xs:element name="sda_connector" type="sda_connector"/>

- 41 -

complexType sda_connector

diagram

children min max element

used by elements sda_state/next sda_actionblock/next sda_decision/otherwise
sda_branch/sda_connector

source <xs:complexType name="sda_connector">

 <xs:sequence>
 <xs:element name="min" type="xs:time" minOccurs="0"/>
 <xs:element name="max" type="xs:time" minOccurs="0"/>
 <xs:element name="element" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

element sda_connector/min

diagram

type xs:time

properties isRef 0

minOcc 0

maxOcc 1

content simple

source <xs:element name="min" type="xs:time" minOccurs="0"/>

element sda_connector/max

diagram

type xs:time

properties isRef 0

minOcc 0

maxOcc 1

content simple

source <xs:element name="max" type="xs:time" minOccurs="0"/>

- 42 -

element sda_connector/element

diagram

type xs:string

properties isRef 0

content simple

source <xs:element name="element" type="xs:string"/>

complexType sda_decision

diagram

children sda_branch otherwise

used by element sda_procedure/sda_decision

attributes Name Type Use Default Fixed annotation

id xs:string required

source <xs:complexType name="sda_decision">
 <xs:sequence>
 <xs:element name="sda_branch" type="sda_branch" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="otherwise" type="sda_connector" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>

attribute sda_decision/@id

type xs:string

properties isRef 0

use required

source <xs:attribute name="id" type="xs:string" use="required"/>

- 43 -

element sda_decision/sda_branch

diagram

type sda_branch

properties isRef 0

minOcc 0

maxOcc unbounded

content complex

children sda_term sda_connector

source <xs:element name="sda_branch" type="sda_branch" minOccurs="0" maxOccurs="unbounded"/>

element sda_decision/otherwise

diagram

type sda_connector

properties isRef 0

minOcc 0

maxOcc 1

content complex

children min max element

source <xs:element name="otherwise" type="sda_connector" minOccurs="0"/>

- 44 -

complexType sda_procedure

diagram

children sda_state sda_decision sda_action

source <xs:complexType name="sda_procedure">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="sda_state" type="sda_state"/>
 <xs:element name="sda_decision" type="sda_decision"/>
 <xs:element name="sda_action" type="sda_actionblock"/>
 </xs:choice>
</xs:complexType>

element sda_procedure/sda_state

diagram

type sda_state

properties isRef 0

content complex

children sda_term next

attributes Name Type Use Default Fixed annotation

id xs:string required

source <xs:element name="sda_state" type="sda_state"/>

- 45 -

element sda_procedure/sda_decision

diagram

type sda_decision

properties isRef 0

content complex

children sda_branch otherwise

attributes Name Type Use Default Fixed annotation

id xs:string required

source <xs:element name="sda_decision" type="sda_decision"/>

element sda_procedure/sda_action

diagram

type sda_actionblock

properties isRef 0

content complex

children sda_action next

attributes Name Type Use Default Fixed annotation

id xs:string required

source <xs:element name="sda_action" type="sda_actionblock"/>

- 46 -

complexType sda_state

diagram

children sda_term next

used by element sda_procedure/sda_state

attributes Name Type Use Default Fixed annotation

id xs:string required

source <xs:complexType name="sda_state">
 <xs:sequence>
 <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="next" type="sda_connector" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>

attribute sda_state/@id

type xs:string

properties isRef 0

use required

source <xs:attribute name="id" type="xs:string" use="required"/>

element sda_state/sda_term

diagram

- 47 -

type sda_term

properties isRef 0

minOcc 0

maxOcc unbounded

content complex

children start end frequency

attributes Name Type Use Default Fixed annotation

name xs:string required

source <xs:element name="sda_term" type="sda_term" minOccurs="0" maxOccurs="unbounded"/>

element sda_state/next

diagram

type sda_connector

properties isRef 0

minOcc 0

maxOcc 1

content co
mplex

children min max element

source <xs:element name="next" type="sda_connector" minOccurs="0"/>

complexType sda_term

diagram

children start end frequency

- 48 -

used by elements sda_branch/sda_term sda_state/sda_term

attributes Name Type Use Default Fixed annotation

name xs:string required

source <xs:complexType name="sda_term">
 <xs:sequence>
 <xs:element name="start" type="sda_time" minOccurs="0"/>
 <xs:element name="end" type="sda_time" minOccurs="0"/>
 <xs:element name="frequency" type="sda_time" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>

attribute sda_term/@name

type xs:string

properties isRef 0

use required

source <xs:attribute name="name" type="xs:string" use="required"/>

element sda_term/start

diagram

type sda_time

properties isRef 0

minOcc 0

maxOcc 1

content simple

facets pattern [0-9]*[smhdwMy]

source <xs:element name="start" type="sda_time" minOccurs="0"/>

element sda_term/end

diagram

type sda_time

properties isRef 0

minOcc 0

maxOcc 1

content simple

facets pattern [0-9]*[smhdwMy]

source <xs:element name="end" type="sda_time" minOccurs="0"/>

- 49 -

element sda_term/frequency

diagram

type sda_time

properties isRef 0

minOcc 0

maxOcc 1

content simple

facets pattern [0-9]*[smhdwMy]

source <xs:element name="frequency" type="sda_time" minOccurs="0"/>

simpleType sda_time

type restriction of xs:string

used by elements sda_term/end sda_actionterm/end sda_term/frequency sda_actionterm/frequency sda_term/start
sda_actionterm/start

facets pattern [0-9]*[smhdwMy]

source <xs:simpleType name="sda_time">

 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]*[smhdwMy]"/>
 </xs:restriction>
</xs:simpleType>

- 50 -

	Introduction
	Antecedents
	Asbru
	PROforma
	EON

	The SDA* Model: Syntax and Semantics
	Formal description
	The Universe of Discourse
	Elements
	Connectors

	Sequences and cycles
	Non-Determinism
	Time
	Parallelism

	Construction and execution of health procedures with the SDA
	Abstract data type SDA* procedure
	Textual representation of SDA* procedures
	Execution of SDA* procedures
	Examples
	Representing partial knowledge
	CSI’s Hypertension Diagnosis and Treatment
	Comprehensive Assessment K4CARE Procedure
	The use of Antidepressant Medication in the Elderly
	Management of Depression with Cognitive Impairment
	Management of Depression with Dementia
	Suicide: Risk of Assessment and Management

	Conclusions and Acknowledgements
	References
	APPENDIX: Schema sda.xsd

