
PlanetSim: An extensible framework for overlay network
and services simulations

Jordi Pujol Ahulló‡

jordi.pujol@urv.cat
Pedro García López‡

pedro.garcia@urv.cat
Marc Sànchez Artigas‡

marc.sanchez@urv.cat

Marcel Arrufat Arias‡

marcel.arrufat@urv.cat
Gerard París Aixalà‡

gerard.paris@urv.cat
Max Bruchmann§

∗

max-bruchmann@gmx.net
‡Universitat Rovira i Virgili §Technical University of Darmstadt
Av. Països Catalans, 26 Karolinenplatz 5

43007 - Tarragona, Spain 64289 - Darmstadt, Germany

ABSTRACT
Research community on distributed systems, and in par-
ticular on peer-to-peer systems, needs tools for evaluating
their own protocols and services, as well as against other
protocols with the same precondictions. Since a (TCP/IP)
experimental evaluation is not always feasible, simulation
tools appeared.

In this paper we introduce PlanetSim, a discrete event-based
simulation framework for overlay networks and services, as
well as extensions from third parties that prove its true ex-
tensibility and adaptability to the reserarchers’ needs. In
addition, we introduce within PlanetSim a novel way of im-
plementing peer-to-peer overlay protocols based on behav-
iors.

Categories and Subject Descriptors
I.6.8 [Types of Simulation]: Discrete event
; D.4.8 [Performance]: Simulation, Measurements; D.3.3
[Language Constructs and Features]: Frameworks

General Terms
Algorithms, Measurement, Performance, Design, Experimen-
tation

Keywords
Overlay network simulator, discrete event-based simulation,
frameworks, design patterns.

1. INTRODUCTION
From the appearance of distributed systems, and in par-
ticular peer-to-peer systems, the research community needs

∗Working at QuaP2P Research Group.

tools for evaluating their own protocols and services and,
even more important, comparing their works against other
protocols with the same preconditions. Two possibilities
were proposed: experimental evaluation where prototypes
of those protocols are tested in real testbeds, like Planet-
Lab [11], and simulated evaluation where protocols are an-
alyzed with some network settings assumptions. As a con-
sequence of node unstability within those testbeds, lots of
simulators have been appearing to help the research com-
munity, becoming standard platforms where different works
are analized. Nevertheless, the vast majority of them are ad-
hoc customized simulators [22] and they are not for general
overlay evaluation purposes, poorly documented or not ex-
tensible to other protocols and settings. Thus, in this paper
we are mainly interested in extensible, scalable, high-level
overlay and services simulation frameworks. In particular,
we focus on structured (e.g. Chord [26], Pastry [25]) and
unstructured (e.g. Gnutella [4]) peer-to-peer systems and
services simulation onto our simulator PlanetSim.

In this way, we believe that the following points are the chal-
lenges to deal with in order to develop such an appropiate
simulator.

High-level simulation for large-scale network eval-

uations. It is obvious that the resources in computers are
limited. Thus, there exists a tradeoff on the simulation preci-
sion. Clearly, packet-level simulations have a true high cost
in time and computer resources, but high-level simulations
show a better performance enabling, thus, big scale network
evaluations. In addition, notice peer-to-peer researchers are
usually more interested in algorithm verification than in sim-
ulating the whole TCP/IP stack.

Convenient overlay network extensibility. We believe
that one of the most important features for an overlay simu-
lator is its capability to enable easily and gracefully the de-
velopment of new overlay protocols, as well as the possibility
to run services (like Scribe [17]) on top of them, regardless
the overlay protocol. It is even more important because the
simulator can provide lots of functions and researchers do
not need to know them at the whole.

Modular, customizable and extensible. While the over-
lay research field is huge, such a simulator cannot be restrec-

tive on its provided functionality. Instead, we believe that a
simulator designed to follow well-known software engineer-
ing techniques will clearly help researchers to learn and ex-
tend the simulator as necessary. A good documentation is
another key point to guarantee its extensibility.

Gathering and showing meaningful information. Re-
trieving simulation results for their later analysis is a central
point within this kind of simulators. It is clear that there
exists a tradeoff between the precision of results gathering
and an expected time-efficient simulation. While some re-
searchers will be interested in gathering some basic statistic
information (like the total simulation time), some others will
be interested in gathering a considerable amount of informa-
tion. We believe that such a simulator should be flexible and
provide both kinds of simulation results. The idea is not pe-
nalizing basic simulations with extra time.

To address these challenges, we propose PlanetSim [20], an
object-oriented, extensible, customizable, efficient framework
for overlay network and services simulations implemented
in Java programming language. In particular, we see these
points as the main contributions of this paper:

1. PlanetSim provides a clearly layered simulation frame-
work, where researchers can easily develop their own
protocols and services, simulating them in a time-efficient
way. To do so, PlanetSim does not consider packet-
level details.

2. PlanetSim provides two ways of implementing new over-
lay protocols: an algorithm-based and a behavior-based
approaches. We see the former as a traditional way to
implement the overlay protocol itself all together by
means of the node API. The latter approach enables
the researcher to split every simple action a node must
perform into different behaviors, defining when such
behaviors are applicable.

3. As PlanetSim layered structure obeys to well-known
pattern designs in software engineering, we provide a
framework with clear hotspots, so that modifications
and extensions to PlanetSim at all levels are easy and
well defined. In particular, we introduce in Section 4
3 useful extensions.

4. From the one hand, PlanetSim defines by default a
näıve mechanism to gather results, avoiding complex
mechanisms that may slow down simulations. From
the other hand, we have defined an introspection scheme
, so that researchers can gather as much statistical in-
formation as necessary.

The whole paper is defined as follows. Section 2 takes an
overview of the existing simulation tools. Section 3 intro-
duces PlanetSim and three of its useful extensions in Sec-
tion 4. Section 5 concludes the paper.

2. RELATED WORK
There is a lot of work in the networking simulation field.
Unfortunately, most of them are specialized in some way,
so they do not provide a general simulation framework for
peer-to-peer systems. Thus, for the sake of conciseness, we
only detail the simulators of special interest for us.

We distinguish between network and overlay simulators. Net-
work simulators provide packet-level simulation of network
protocols (TCP, UDP, IP, etc), even awareness of delays,
bandwidth and effects of TCP flows, over realistic Internet
topologies. But there is an inherent cost on accounting all
these low-level concerns, leading to an impoverished scala-
bility for big networks. Instead, overlay simulators are usu-
ally more interested in evaluating overlay algorithms and
its routing behavior without even taking into account the
underlying network layer. The excessive overhead and com-
plexity of network simulators thus imposes an unnecessary
burden to overlay evaluators and researchers. For this rea-
son, PlanetSim omits the low level details of internet routing
substrate, because overlay networks conceal the details and
pay little attention on them. This simplifies the implemen-
tation and greatly improves the performance. Nonetheless,
PlanetSim can be easily extended, in particular, to load net-
work models as we detail in Section 4.2.

Network simulators. There exist various low-level simula-
tors like NS-2 [14], OMNET++ [8], J-Sim [6] and Narses [15].
For example, NS-2 [14] and OMNET++ [8] provide a stan-
dard framework for accurate simulation of network proto-
cols. They are appropriate to simulate networks in the link,
switching and transport layer. Besides, for smaller scale
scenarios NS-2 and OMNET++ perform gracefully, but for
overlays over a hundred in size suffer considerable scaling
problems.

Overlay simulators. Many research groups have created
their own overlay simulators, sacrificing accuracy for scale.
Examples of these include PeerSim, FreePasty, SimPastry,
3LS, PLP2P, SimP2, CANSimulator, GnutellaSim, Neuro-
Grid, OverSim, PeerfactSim.KOM, MAPLE, GPS, TOSim,
ONSP and Query-Cycle Simulator. Some of them are for
specific purposes and, thus, they are not for general peer-to-
peer protocol evaluation. CANSimulator [2], FreeNet Sim-
ulator [23] and GPS (General Peer-to-peer Simulator) [30]
only support CAN DHT, FreeNet and BitTorrent protocols,
respectively. NeuroGrid Simulator [7] is focused on simulat-
ing searches over content distribution networks. is focused
on simulating only protocol. Query-Cycle Simulator [18] is
a cycle-based simulation framework for file-sharing peer-to-
peer network simulation. TOSim (Trust Overlay Simula-
tor) [27] is based on PeerSim [10] but emphasizing in trust
and reputation integration within simulations. MAPLE [21]
is a simulation system focused on nearest neighbor queries
in mobile device environments. ONSP [28] is an overlay
network discrete event simulation platform designed to run
parallelized simulations using MPI. ONSP supports differ-
ent network topology models and it is focused to simulate
large overlay networks.

Some of them leverage low-level simulators. For example,
OverSim [16] stands onto OMNET++ and has implemented
differents underlays (INET, Simple and SingleHost) and over-
lays (Chord, Kademlia, Koorde and Broose) and demon-
strates its feasibility to simulate large networks with the
Simple underlay, that just avoids packet-level network rout-
ing simulation. As in PlanetSim, OverSim provides a Com-
mon API [19] to applications, thus making it very easy for
developers to create and simulate complex distributed ap-
plications. Protocol specific details remain hidden from the

application-level point of view. Another example, Gnutel-
laSim [5], runs on top of other network simulators (like NS-
2). Nonetheless, the interface between node and application
layers is peer-to-peer specific, making difficult reuse appli-
cation implementations and do not scale to thousands of
nodes. Thus, these approaches are absolutely tied to the
packet-level simulator, making difficult its extensibility and
scaling.

In the field of structured overlays, one of the pioneers is
MIT’s p2psim [9]. This simulator currently supports many
protocols, including Chord, Accordion, Koorde, Kelips, Tap-
estry and Kademlia. p2psim is able to load network topol-
ogy models (GT-ITM, etc) and it is protocol extensible, be-
ing pretty straightforward to develop new protocols by sim-
ply implementing the join() and lookup() low-level methods.
Despite its protocol independence, p2psim provides no inter-
face in order to simulate higher level applications. Besides,
from the software engineering perspective, this simulator is
poorly documented and difficult to extend for different pur-
poses.

PeerSim [10] is a Java open-source component-based sim-
ulator which operates in two mode: event-based and cycle-
based. PeerSim has good documentation and promises being
flexible and, for instance, enables to define a stack of proto-
cols on each node, with pluggable components. Cycle-based
simulation promises to scale to big networks while event-
based one permits more realistic simulation. We here focus
on project activity and extensibility by third parties as a
measure of whether a simulator is interesting and attractive:
while people from around the world collaborate with Plan-
etSim and we show some of their extensions in this paper,
the same thing does not occurs to other overlay simulators
and, in particular, to PeerSim.

FreePastry [25], the Java open-source implementation of Pas-
try structured peer-to-peer protocol includes, as well, the
possibility to simulate applications on top of this overlay
network. As in PlanetSim, FreePastry provides a Common
API [19] to the applications built on top of it. However,
FreePastry is highly tied to the Pastry protocol, and it does
not permit simulation of its applications on top of other
structured peer-to-peer protocols.

Another interesting approach is the one followed by MACE-
DON [24]. Macedon provides an infrastructure to ease de-
velopment, evaluation, and iterative design of overlay al-
gorithms. Applications are built using a C-like scripting
language, and code is automatically generated for TCP/IP
and NS-2. Moreover, it follows a standard API which does
not tie applications to any specific overlay network proto-
col. Large-scale emulation and evaluation tools are at the
developer’s disposal as well. Macedon is not limited to struc-
tured P2P networks, and it includes an impressive variety of
protocols and applications such as AMMO, Bullet, Chord,
NICE, Overcast, Pastry, Scribe, and SplitStream. Further-
more, MACEDON simplifies development of new overlays
using a finite state machine (FSM) model for defining over-
lay protocols.

MACEDON is a very nice tool for overlay simulation but
it follows a completely different approach than PlanetSim.

MACEDON is mainly related to Domain-specific languages
(DSLs) that generate functional code from domain specific
representations. Besides, MACEDON currently supports
only two types of overlays: distributed hash tables and appli-
cation level multicast. In contrast, we have created a layered
and modular framework that is extensible at all levels, and
that can even be integrated with other frameworks. DSLs
like MACEDON are not designed to be extensible but in-
stead to provide all possible functionalities and vocabularies
in the domain language.

3. PLANETSIM
In this section we describe PlanetSim’s architecture, detail-
ing in which hotpots (i.e. extension points) our framework
is extensible. Afterwards, in the following sections we point
out some of its most interesting extensions, which demon-
strate its true extensibility. Notice PlanetSim is freely down-
loadable under LGPL license from the website [12].

PlanetSim has been developed in Java language in order
to reduce complexity and smooth the learning curve of our
framework. We aim to create a framework that is easy to
learn, easy to use, and easy to extend. The main drawback
of this decision is the performance penalty that Java im-
poses. We however have carefully profiled and optimised the
code to enable massive simulations in reasonable time. To
validate the utility of our approach, we have implemented
two overlays (Chord by the algorithm-based approach and
Symphony by the behavior-based approach) and a variety of
services like distributed hash tables (DHTs), scalable multi-
cast/anycast (CAST), as well as descentralized object loca-
tion and routing (DOLR). We have proved that PlanetSim
reproduces the measures of these environments.

3.1 Design and Architecture
We believe simulator flexibility and extensibility is impor-
tant in order to provide adaptability against different re-
searchers requirements. To do so, we have defined Planet-
Sim as a layered architecture, where the different elements
can be replaced easily to adapt the simulator correspond-
ingly. First, we focus on the application and overlay inter-
faces that enables running the same applications on top of
different overlays. Afterwards, we detail our layered archi-
tecture design.

3.1.1 A Common API for Overlays
We aim to make independent applications and services im-
plementation from specific overlays, to enable application
portability and code reusability against different overlays.
Thus, we have designed the interaction between services and
overlays based on the Common API (CAPI) [19]. The mo-
tivation of this decision is the plethora of applications and
services that can be build on top of overlays. We can see
the CAPI diagram in Fig. 1.

In [19] authors define a layered design where services and
applications can be built ones on top of others. The bot-
tom tier is the so-called Key Based Routing (KBR) layer as
the common denominator of services provided by structured
overlays. Afterwards, on top of KBR layer, different services
like DHT, CAST and DOLR can be defined. Eventually,
specific services like Scribe [17] can be easily constructed,
providing the whole set of services to end-user applications.

Figure 1: Common API diagram.

To do so, the CAPI provides two kinds of functions: the first
ones for routing and processing messages in applications,
route (downcall), forward and deliver (upcalls), and the sec-
ond ones for accessing node’s routing state information, lo-
cal lookup, neighbourSet, replicaSet, range (downcalls) and
update (upcall).

We believe that CAPI provides such a unifying layer to dif-
ferent DHT systems, thus enabling to run the same applica-
tion on top of different algorithms (e.g. Chord, Symphony,
Pastry) as we expected. The API is, however, loosely de-
fined and each research group is implementing its own ver-
sion. This clearly hinders application interoperability and it
only helps to improve understanding of applications in differ-
ent DHTs through a common vocabulary. After evaluating
different overlay architectures, we concluded that FreePas-
try is the cleanest and more advanced implementation of
a structured overlay, with several applications implemented
on top of it by means of a clean object-oriented implemen-
tation of the CAPI, but supporting only Pastry as overlay
algorithm. We have decided, thus, to embrace FreePastry’s
CAPI implementation in our framework to leverage their
existing code base and developers.

3.1.2 PlanetSim Layered Design
PlanetSim’s architecture comprises three main extension lay-
ers constructed one atop another. As we can see in Fig. 2,
overlay services are built in the application layer using the
standard Common API facade. This facade is built on the
routing services provided by the underlying overlay layer.
Besides, the overlay layer obtains proximity information to
other nodes asking information to the network layer.

The network layer dictates the overall life cycle of the frame-
work by calling the appropriate methods in the overlay’s
Node and obtaining routing information to dispatch mes-
sages through the Network. As we will show later, the pro-
vided Network can be replaced for other ones in order to
account latencies and load network models (e.g. GT-ITM,
BRITE) to simulate more realistic scenarios.

We outline three main extension points (hotspots) in our
framework:

• Application. Developers of overlay services like Scribe
must extend the Application class to implement the
required messaging protocol. Application methods are
upcalls from the overlay layer, which notify new mes-

Figure 2: PlanetSim layered design.

sages. The Application code can then send or route
messages using the EndPoint (downcalls) as well as
access underlying node routing state. Any application
created at this level can then be run or tested against
any overlay in the next layer.

• Node. Developers of overlay algorithms like Chord
must extend the Node class to implement the required
overlay protocol. The Node provides incoming and
outgoing message queues that permit to create the
overlay infrastructure required in the upper layer. At
this level nodes exchange messages using Ids and Node-
Handles (IP Address + Id).

• Network. It is possible to create customized Net-
works (CircularNetwork, RandomNetwork) by modify-
ing specific configuration properties. In addition, one
can construct its own network model taking into ac-
count proximity, so that the overlay structures become
congruent with the underlying physical network.

As a direct consequence of this layered approach, we can
identify two user roles: the users interested in overlay ser-
vices and the users focused on overlay infrastructures. The
former can thus develop and test different overlay services
on top of different overlay schemes. The other kind of users
can be mainly interested in overlay analysis, from where the
simulator provides the mechanisms to probe and compare
different overlays, as well as to evaluate an overlay scheme
against different network topologies (e.g. GT-ITM, BRITE).

Application Layer
At this layer we have followed FreePastry’s implementa-
tion of the Common API. In this line, the interfaces bor-
rowed from FreePastry are Application, EndPoint, Message,
RouteMessage, Id and NodeHandle. We can see that this
API is a facade to the underlying routing system of the
simulator. This layer can thus permit very easily to test
applications like DHT or Scribe multicast over different im-
plemented overlays like Chord or Symphony.

We outline the Application and EndPoint classes as the main
implementers of CAPI, where Application have the CAPI
upcalls functions and the EndPoint includes the CAPI down-
calls. In this way, Node notifies messages to Application by
means of mainly forward, deliver and update. The EndPoint

is a facade to the underlying overlay Node and provides the
route method and routing state methods like replicaSet.

Overlay Layer
The main conceptual entity and obvious hotspot of this layer
is Node. A Node contains incoming and outgoing message
queues and methods for sending and receiving/processing
messages. Each particular Node must then define a complete
behavior or protocol that will dictate which messages to send
in specific times and how to react to incoming messages.
Furthermore, to create a new overlay, the embedded protocol
must define its own messages with specific information to
arrange the overlay. This also implies that developers should
be able to define their own message types and (a)periodic
tasks.

As Fig. 2 depicts, the overlay layer have a bidirectional com-
munication with application and network layers. Between
application and overlay layers the CAPI communication ex-
its. EndPoint and Node exchange RouteMessage entities,
which define source, target and next hop information in
order to route these messages accordingly. Between over-
lay and network layers, Node entity defines the join, leave,
fail and process methods, which determine the life cycle at
ovelay nodes. Specifically, process method has the neces-
sary protocol each node maintains to create and maintain
the overlay, while processing incoming messages and sending
messages (if necessary) into the outgoing queue. Finally, Id
entity enables to identify nodes in the overlay (and in partic-
ular in the simulator). Id must be implemented accordingly
for each overlay protocol (e.g. we have defined Chord Ids
by number types from 32 to 160 bits), while the IdFactory
entity provides the specific way to build new Ids. Therefore,
for implementing unstructured overlays like Gnutella into
PlanetSim one only has to build in addition some unique
key (e.g. unique integer values) as node Ids.

Network Layer
This layer is the main actor who dictates the overall life
cycle. The simulator will run n simulation steps or until
a specific goal (i.e. the network is stabilized) is achieved,
while processing events. Events are node joins, leaves, fails
or lookups, that can occur in different steps. In each step,
the simulator moves outgoing messages to incoming queues
for all nodes accordingly, and then calls the process method
in each node to react to incoming messages.

The key hotspot is the Network: it represents the underlying
network that the simulator uses to route messages. Thus, we
could implement a GT-ITM topology in a Network in order
to provide more realistic information like costs and latencies.
Nevertheless, we provide a simple Network implementation
without latency costs, in order to focus on algorithm verifica-
tion, without proximity information worsening the simulator
performance.

Another key possibility is to integrate our simulator with
network simulators (e.g. NS-2, OMNET++). To do so,
an appropiate Network and NetworkFactory will theoreti-
cally perform such an integration. This design opens new
possibilities to feedback the overlay network with dynamic
latencies or even node mobility for Mobile and Ad-Hoc Net-
works (MANETs). For example, a C++ implementation of

Figure 3: PlanetSim kernel diagram.

PlanetSim could provide the integration with NS-2 or OM-
NET++. In the same way, one could develop a Network
implementation in order to run already implemented over-
lays in an experimental (TCP/IP) environment.

Another interesting feature of the simulator is to serialize
to a file the full state of a simulation. This can be used
for example, to stabilize a huge overlay network, serialize it,
and later on resume the simulation from that point. This
feature is extremely useful for large simulations and saves
valuable computing time.

3.2 PlanetSim Kernel
We outline the amount of work done in PlanetSim kernel
with thousands of Java source code lines and with good
documentation in source code making it readable. Fig. 3
depicts the simulator kernel. The most visible entity within
the kernel is the GenericFactory, which unifies all abilities
the simulator provides. We detail all kernel’s entities as fol-
lows:

• Configuration Attributes. We defined a Properties
class to load, as well as to verify the correctness of the
value types, and to provide within the simulator the
whole specific current simulation configuration.

• Factories. Following the Factory Method design pat-
tern, we defined a set of Factory classes to build accord-
ingly all class types. For example, a specific IdFactory
implementation would build a specific Id implementa-
tion. Notice that Symphony’s Ids are float numbers,
but Chord’s Ids are natural numbers of up 160 bits.

• RouteMessage Pool. For every discrete simulation
step overlay nodes process lots of messages (RouteMes-
sages) from their incoming queue and to the outgo-
ing queue. As this step is actually very intensive,
we have designed this pool to reuse them as much
as possible once they are free. This prevents then
the Java Garbage Collector execution, saving notably
time of simulation. This pool has an API to easily get
RouteMessages instances correctly initialized. Fig. 4
shows the default RouteMessage diagram. Addition-
ally to routing information (source, nexthop and tar-
get), it defines a type and a mode to help differentiating
all kinds of communications into an overlay protocol.

Figure 4: RouteMessage diagram.

• Behaviors. We add within the simulator a novel way
to implement new overlay protocols. Briefy, a behavior
is a Java class that encapsulates a simple action a node

Figure 5: Configuration loading process.

must perform in response to certain event(s). Thus,
an overlay protocol can be defined completely by a
set of Behaviors. We detail Behaviors in the following
section.

• Results. We provide a way to make outputs in differ-
ent formats, detailing the overlay network setting. We
provide GML and Pajek result formats. This exten-
sion point helps to employ visual tools which are very
useful for the protocol verification.

• Unified View of Kernel Abilities. There exist a
great number of class instances to use simultaneously
to complete a simulation. Following the Composite
design pattern, we have defined the GenericFactory as
a facade to all functionality provided by several in-
stances needed during a simulation. This class has the
advantages of hiding instances interdependences and
improving the memory usage by maintaining only one
instance for each class type.

We provide a way to save notoriously time for repetitive
simulations while verifying protocols, by means of the con-
figuration loading process. As depicted in Fig. 5, Properties
class loads firstly the Main Configuration File (MCF). MCF
contains one or more lines1 of the form TEST NAME =

specific file for every test (i.e. main application), which de-
fine the Specific Configuration File (SCF) with all expected
configuration properties. SCFs contain differentiated blocks
where all simulator parts are accordingly configured. Since
simulator source code only retains the MCF filename, we
provide easily a way for repeating simulations without re-
compilation and, thus, saving the developer time and from
annoying repetitive tasks. Notice that this loading process
is only executed once at the beginning during the simulator
initialization.

3.3 Behavior Model
To provide a greatest degree of reusability, PlanetSim in-
cludes an alternative model to encapsulate the actions a
node performs in response to events. This model relies on
the notion of behavior. In strict terms, a behavior is a Java
class, namely Behavior, that specifies the action a node must
perform in response to a specific kind of message. By a spe-
cific message we mean a message whose performative, i.e.
the message’s type and mode, match the behavior’s descrip-
tor. In essence, a behavior descriptor can be visualized as
an expression that establishes when a Behavior must be ex-
ecuted. In its primary form, a behavior descriptor can be
a pair of literals establishing the message’s type and mode.
However, it must be noted here that behavior descriptors
can be more complex. Later, we will delve into this.

1If there are various lines, exactly one line appears only
uncommented.

The key idea behind our behavior-oriented programming model
is to allow developers to encode the set of actions any node
can perform in separate classes that can be added and re-
moved at will, without recompiling the source code to spec-
ify the way in which nodes must behave in each simulation.
As an example, consider that a user wishes to test the fault-
tolerance of a routing protocol in front of Byzantine failures.
Using our model, we could define a set of Behaviors, one for
each type of Byzantine failure, and add and remove them in
each simulation to observe how the routing protocol behaves
in front of specific permutations of failures. It is important
to signal that the addition/removal of behaviors is done by
merely modifying the configuration file.

3.3.1 Runtime Execution
Thus far, we have introduced the notion of behavior, but
we have not explained what happens at runtime when the
simulator uses Behaviors to model nodes’ actions. Next, we
describe this.

At the heart of our model there is a singleton object called
behavior’s pool (BhP). The BhP keeps the instances of the
Behaviors (i.e., one instance per Behavior), and acts as a
proxy executing the corresponding behaviors on the nodes
that have received new messages at the current step. To bet-
ter understand this, we provide a simple example. Consider
that a structured peer-to-peer overlay wants to replicate the
contents stored under a key whenever a Replicate message
arrives at a node. Using the original interface, a Planet-
Sim user would probably implement this operation modify-
ing the dispatcher method inside the node. However, in this
approach, the user would implement it in a new Behavior,
we call it ReplicateBehavior, avoiding the recompilation of
the source code. In this case, once the programmer would
have finished the implementation of the ReplicateBehavior,
it would edit the configuration file to include the new be-
havior entry specifying to execute the the ReplicateBehavior
when a Replicate message arrives at a node.

The simulation proceeds as follows. At the start up, the sim-
ulator instantiates the BhP, and then, loads all the Behaviors
specified in the configuration file. At that point, the BhP is
ready to invoke Behaviors. For doing so, it intercepts the in-
coming messages and compares their performatives against
the behavior descriptors. An interesting feature of the cur-
rent BhP implementation is that any message can match
more than one behavior descriptor at the same time. The
idea is that PlaneSim can reuse the same task for more than
one message type. Note that many protocols tend to perform
the same set of tasks for almost all types of message arrivals.
So, PlanetSim should support multiple behavior invocations
per message. In order to do this, the BhP maintains a stack
of Behaviors for every message. Furthermore, each stack
contains the Behavior instances ordered from more specific
to more generic, to provide an uncertainty model, which we
believe could be useful to model Byzantine behaviors.

The BhP invokes a Behavior passing a pair of arguments.
These are the original RouteMessage and the Node to which
the RouteMessage is addressed. The reason behind passing
the Node lies on the necessity of the targeted Node to up-
date its internal state as a result of the invoked Behavior.
In our example, it’s clear that once the ReplicateBehavior

is executed on an arbitrary node, this node must replicate
the requested key and update its internal state to maintain
which of its neighbors are indeed storing the key.

Once the Behavior execution finishes, the BhP returns ei-
ther the control to the node or spawns a new Behavior; this
depends upon whether the stack of Behaviors has been com-
pletely executed or not. In our example, after intercepting a
Replicate message, the BhP will dispatch the ReplicateBe-
havior, and then, it will yield the control to the node.

It is important to note here that the implementation of the
BhP is not fixed and an expert PlanetSim user can customize
a new one to meet its own interests. For that purpose, the
simulator includes several interfaces (e.g. BehaviorsFactory,
BehaviorsPool, ...) to let developers customize the runtime
behavior classes.

3.3.2 Behaviors Descriptors
A behavior descriptor is the result of the union of several
fields, which attend to distinct reasons. Next, we describe
these fields:

1. Message’s type. The type represents a task. A task
can involve a unique message, a query and response,
or even a complex interaction. However, the basic idea
is that, while being in the same task, any message
maintains the same type.

2. Message’s mode. It stems from the fact that in any
task we require to identify in which state we are.

3. Probability. This property let the BhP add uncer-
tainty in the execution of Behaviors. In general, this
field can be useful to model a Byzantine behavior for
nodes.

4. Scope. The scope property refers to the message’s
recipient. It can take three literals, which are:

(a) LOCAL. This literal indicates to the BhP that
the Behavior will be executed only if the message
is destined for this node.

(b) REMOTE. It tells the BhP that the current Be-
havior will be executed only if the recipient is a
remote node, distinct from this one. This option
has been devised to write down routing proto-
cols in behavioral form. That is, we need that a
RoutingBehavior executes at each hop unless the
current node is the destination.

(c) ALWAYS. It establishes that the value for this
property must be ignored.

5. Role. It tells the BhP that the behavior execution can
be conditioned on the node’s role. From a protocol’s
viewpoint, a node is GOOD when it follows the pro-
tocol; and BAD otherwise. The literal NEUTRAL

forces the BhP to ignore the role of the Behavior. No-
tice that this property provides a natural mechanism
to examine the fault-tolerance and security issues in
peer-to-peer protocols. Developers can write two sets
of disjoint Behaviors, one set for the GOOD nodes,
and one for the BAD nodes to investigate what hap-
pens when a specific fraction of nodes does not behave
properly.

The type and the mode depend on the kind of messages re-
quired by the peer-to-peer protocol to implement. They can
take literal values like DATA or REQUEST . Nonetheless,
they can also take a pair of powerful wildcards: the ‘?’ (i.e.
the complementary wildcard) and the ‘*’ (i.e. the univer-
sal wildcard). The universal wildcard permits a Behavior
to be executed irrespective of the current value of the type
and mode of the incoming message. In contrast, the com-
plementary wildcard forces the BhP to execute a Behavior
unless there is a most specific combination of message’s type
and mode. For example, suppose there exists a Behavior A
for the pair < DATA,REQUEST > (we treat the union of
the message’s type and mode as a pair: < type,mode >).
In addition, consider that the overlay uses 3 message modes
REQUEST , REPLY , and REFRESH . Then, associat-
ing the pair < DATA, ? > to a Behavior B, B 6= A, has
the consequence that any message with the performatives
< DATA,REFRESH >, and < DATA,REPLY > causes
B to be invoked instead of A.

As aforementioned, the BhP maintains for each message
a stack of Behaviors ordered from more specific to more
generic. The precedence is listed on following table with the
pairs (i.e. < type,mode >) ordered from the most specific
to the most generic:

Type Mode

Literal Literal
Literal ?
Literal *
? Literal
* Literal
? *
* ?
* *

+ spec.

��

- spec.

As an example, we include a configuration file with 3 Behav-
iors to illustrate a simple specification (configuration file):

RoutingBehavior ? * 1.0 REMOTE NEUTRAL

JoinBehavior JOIN REQUEST 1.0 LOCAL NEUTRAL

Databehavior DATA * 1.0 ALWAYS NEUTRAL

The unique shortcoming of this model is that Behaviors are
also singleton objects and hence, they require the instance
of the node to be passed as parameter. This slows down sim-
ulations, albeit not significantly (see Table 1). Nevertheless,
we believe that for many applications (such the analysis of
a routing protocol in front of Byzantine failures) the loss
in scalability is by far compensated by the greatest flexibil-
ity of this approach. We provide the Symphony protocol
implemented by means of Behaviors.

4. EXTENSIBILITY
In this section we detail some of the most interesting exten-
sions made on PlanetSim by third parties, proving its flex-
ibility and adaptability. Specifically, we detail i) how can

Table 1: Evaluation of Behaviors performance

against simple TrivialP2P protocol included in Plan-

etSim. Time is measured in seconds.
Network Using Lookup Total Incr.

Size Behaviors Time Time Ratio

100 Nodes Yes 2.08 2.19 0.2327

No 1.69 1.78

1000 Nodes Yes 248.24 252.27 0.2711

Yes 195.29 196.84

the simulator extract statistics information accordingly, ii)
how researchers can simulate various overlays within a sin-
gle simulation and iii) how simulations can be time-improved
by leveraging a multi-processor computer. As PlanetSim is
focused on the efficient simulation of peer-to-peer networks
rather than packet-level simulations, we believe that these
features are of great interest for the community.

4.1 Gathering and Showing Information
Another way for adding more functionality to software is
aspect orientated programming (AOP). AOP is really inter-
esting because when disabled it penalizes neither in terms
of computation time nor memory usage of a expected time-
efficient simulation. We use this approach to extend simu-
lator functionality with a clear separation of concerns, for
example for statistics. AOP could also provide the possi-
bility to remove unused functionality from PlanetSim. For
implementing aspects we use AspectJ [1] that works very
smoothly with the Java programming language.

4.1.1 Gathering Information
In our new branch we have build an aspect to gather statis-
tics and write them in a Gnuplot [3] readable file format.
However, one can build her own aspects to gather any de-
tailed information from the simulation. By using the Plan-
etSim statistics aspect, the simulator creates after each sim-
ulation run several data files (.dat) and a control file (.plt)
which can be executed by Gnuplot. This statistics aspect
gathers information about the amount of messages that are
sent in each step of the simulation. As messages differ in
their type, mode and content, the data files are named by
the message type, mode, content and the name of the sim-
ulation. The control file’s name is concatenated by the the
word traffic and the name of the simulation, for example
“traffic.HELLOWORLD DHTPEERTEST.plt”.

4.1.2 Showing Information
The simulator has a hotspot to export the simulated net-
work status in different formats (currently available GML
and Pajek). However, it could be interesting to integrate
some existing tools with the simulator, in order to leverage
their visualization abilities. Prefuse [13] is a visualization
toolkit that lastly is having a lot of attention. Prefuse is
implemented in Java under BSD licence, with clear APIs
and good documentation. Even more, Prefuse can produce
progressive visualization, thus a step-by-step visualization
of the simulation run could be performed.

As a result of our statistics aspect, the simulator provides
other ways to show results. In this case, we have decided to
use Gnuplot for the results visualization, but one can decide
to gather the information in other formats. Gnuplot is a tool
to plot data and functions in various visualization forms. A
common way to insert data into Gnuplot is to create data
files with two columns for the x and the y values and a
control file where is defined which data should be drawn.
In case of a simulation that deals with a lot of different
messages Gnuplot will plot a very complex diagram. For
getting a more clear view it is recommended to comment
out the unused curves in the control file by putting “#” in
front of the specific line.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000

nu
m

be
r

of
 m

es
sa

ge
s

steps

Traffic

[DATA][REFRESH][DataMessage]
[QUERY_JOIN][REFRESH][JoinMessage]

[DATA][REQUEST][DataMessage]
[QUERY_CONNECT][REFRESH][NO-CONTENT]

[ACCEPT_CONNECT][REFRESH][NO-CONTENT]
[SET_INFO][REFRESH][NeighbourMessage]

[CLOSE_LONG_CONNECT][REFRESH][NO-CONTENT]
[CLOSE_NEIGHBOUR_CONNECT][REFRESH][NeighbourMessage]

[CANCEL_CONNECT][REFRESH][NO-CONTENT]

Figure 6: PlanetSim created statistics on

“HELLOWORLD DHTPEERTEST” test

4.1.3 Gnuplot Output Example
After running the“HELLOWORLD DHTPEERTEST”on a
Symphony overlay with 1000 nodes and a duration of 8.828
seconds, Gnuplot can now visualize the diagram depicted in
Fig. 6. The x-axis indicates the simulation steps and the y-
axis the amount of a messages at a step. Moreover, Gnuplot
can also visualize diagrams in colors.

4.2 Latency-aware simulation
Researchers not only will be interested in accounting num-
ber of hops for different simulation settings, but also ac-
counting other network properties like latencies. In this
way, we have extended Planetsim to add latency aware-
ness in order to evaluate in a more realistic context sensi-
tive and more complex applications like content distribution
networks. This extension is composed mainly of two com-
ponents: a) a parser retrieves latency information from a
network model and b) the overlay routing protocol is slightly
modified to provide latency aware routing.

In first place, we define the parser hotspot to load into a
latency model the communication cost information, which is
usually represented by a graph file. Currently, we provide
a Pajek graph file parser that computes all communication
costs between peers during the initialization stage. For do-
ing so, we define a routing selection algorithm to find the
best route. In our case, we apply the Dijkstra’s shortest
path algorithm. However, other parsers and routing selec-
tion algorithms can be easily implemented (e.g. a GT-ITM
file parser) following their interfaces.

The other key point is that nodes route messages taking
advantage of latency information provided by the latency
model. But, this issue depends though highly on the overlay
and needs of a specific implementation for each protocol:
Chord, Symphony, etc. However, changes are localized into
the Node class that implements such an overlay protocol.

We have modified our Chord in a similar way of that LPRS-
Chord [31]. Despite Chord defines greedy routing to send
messages to the furthest located nodes, using the latency
model information nodes can now configure their finger ta-
bles by choosing such nodes belonging to each finger interval,
but reducing the distance in terms of identifier space as well
as latency. In consecuence, this mechanism clearly implies a
tradeoff between reducing latency and increasing the number
of hops, which can be balanced easily in the node implemen-
tation.

205

210

215

220

225

230

A
V
G
.
 L
a
te
n
c
y
 (
m
s
)

no latency latency aware

4

4,2

4,4

4,6

4,8

5

A
V
G
.
N
u
m
b
e
r
o
f
H
o
p
s

Figure 7: Latency evaluation on a Chord network of

500 nodes.

Fig. 7 depicts the evaluation of considering (or not) latency
information for routing in a 500-node network of our mod-
ified Chord, where latency information was taken from the
PlanetLab network to use a realistic model. We can see
how the overall latency is reduced (left), whereas the total
number of hops is almost the same (right). This methodol-
ogy clearly improves routing efficiency and enables further
evaluations of network effects into the overlay behavior.

4.3 Multi-network simulation
Real networks are usually composed by complex intercon-
nected systems. For instance, Internet is formed by a set
of autonomous systems (AS) that interact using an inter-
domain protocol, whereas internal routing is provided by a
different protocol. In overlay networks it is also possible to
set up a system composed by several overlays that interact
between them at the same time, where each overlay main-
tains its routing behavior. For example, hierarchical over-
lays [29] require of various overlay networks interconnected
by routing-peers to compose a scalable system.

Considering the utility of multi-network simulations, we added
to PlanetSim the support for multiple overlay networks.
This feature allows creating one, two or more overlay net-
works in the same simulation run. To do so, we introduced
the notion of the superpeer node, a special node that con-
nects two or more overlays. Thus, communication between
applications is allowed even if they are running in different
overlays.

The configuration of multi-network simulations is also very
flexible. The overlay networks used in the simulation can
be configured separately, and they can present different op-
tions, since each overlay has its own configuration file. It
is also possible to use multiple topologies, for instance, a
simulation of a Chord overlay and two Symphony overlays
interconnected. For doing so, we have added some config-
uration properties: the number of nodes that will act as
superpeers, as well as which overlay networks will intercon-
nect each superpeer.

Enabling inter-overlay communication is easy. The routed
messages need the overlay identifier, an extra parameter
indicating the destination overlay. Nodes perform inter-
overlay routing by means of an entity with global knowledge
of the location of superpeers and the multi-network struc-
ture, in the same way that nodes know how to contact to
superpeer nodes in a hybrid architecture. This simplified
routing mechanism provides the most suitable local super-
peer and also the minimum distance in terms of superpeer
hops between a source overlay and a destination overlay.

2 superpeers

3 superpeers

 A
V
G
.
N
u
m
b
er
 o
f
H
o
p
s

2 3
0

2

4

6

8

10

Num. Superpeers

Figure 8: PlanetSim multi-network experiment.

As many other parts of PlanetSim, multi-network simula-
tion provides several hotspots to extend the framework and
adapt to different simulation environments. In this case, the
main hotspots are the superpeer selection mechanism and
the routing policy employed to select the suitable superpeer
that must route the message up to the target overlay.

Several simulations were performed to test this extension,
such as testing different overlay networks with various sizes
and overlay interconnection topologies. Fig. 8 shows the
results of a test accounting the mean number of hops of
100 messages sent to random destinations. The same multi-
network configuration (two Chord overlays and one Sym-
phony overlay, with 100 nodes each) was tested with 2 and
3 superpeers. Since 3 superpeers assure the interconnection
between all 3 overlays, the mean hop count decreases with
respect to the configuration with 2 superpeers.

4.4 Multi-thread simulation
The original PlanetSim release was designed to run on sin-
gle CPU computers, but the current trend is using multi-
core CPU machines. Therefore we created a new Planet-
Sim branch which focuses on supporting this technology.
In the original PlanetSim the simulator processed in each
simulation step sequentially over every node by calling the
boolean process(int) method. This allows nodes locally to
read messages from the incoming queue and to put new mes-
sages in the outgoing queue.

In the new version, in each simulation step the whole node
set is split up in K groups and each group is now processed
by an own thread. The number of groups K can be speci-
fied in the simulation’s properties by assigning the number of
groups K to the property SIMULATOR PROCESSORS .
For example, if you have a cpu with two cores, you can use
the following setting: SIMULATOR PROCESSORS =

2 . In a simulation with for example 1000 Nodes the simula-
tor distributes calling the method process among the two cpu
cores. Thus the simulator needs less time to finish its work.
Table 2 shows some results of this improvement. Notice that
since parallelization is performed for every simulation step
(not for the whole simulation process), the speedup is not
quite high. Nevertheless, we believe that an improvement of
around 30% on the simulation time with a dual core com-
puter is by far notorious.

4.4.1 Programming restrictions for multi-threading
simulations

As the nodes act locally, there are only a few things to con-
sider. Behaviors should not have fields, because in the cur-
rent version there is one single BehaviorPool. This means
that there are only unique behaviors which are shared be-

Table 2: Evaluation of multi-threading.

Network Num. Total
Size Threads Time (sec.) Speedup

10000 1 480.266
2 367.344 1.30

1000 1 100.782
2 76.875 1.31

tween the processing threads. Another problem at the mo-
ment is that program calls like Results. incTraffic () or calls
that retrieves messages (GenericFactory.getMessage()) from
the MessagePool had to be declacered as synchronized which
can lead to a bottleneck in the performance with multiple
processors.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced PlanetSim, an extensible, cus-
tomizable and efficient framework for overlay and services
simulation. The simulator is implemented in Java language
under LGPL license and all work presented in this paper
is fully downloadable from PlanetSim Website [12]. We de-
tailed the simulator architecture, our novel behavior model
to facilitate overlay implementation and verification, as well
as simulator’s hotspots and several extensions which prove
the flexibility, adaptability and ease of use of PlanetSim.

PlanetSim has a live community, including users and devel-
opers from around the world, which has enabled to develop
the extensions presented in this paper, as well as improve
its performance and solve bugs. Now on, we are going to
analyse how to provide a better PlanetSim performance and
to design new abstractions to provide new functionalities
within the simulator.

6. ACKNOWLEDGMENTS
Authors appreciate feedback and work from contributors
and developers and for believing in PlanetSim Project. This
work has been partially funded by the European Union un-
der the 6th Framework Program, POPEYE IST-2006-034241,
and by the Spanish Education and Science Minitry, AP-
2006-04166 FPU grant.

7. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj.

[2] CANSimulator.
http://sourceforge.net/projects/cansimulator.

[3] Gnuplot. http://www.gnuplot.info.

[4] Gnutella. http://www.gnutelliums.com.

[5] GnutellaSim. http://www.cc.gatech.edu/computing/
compass/gnutella/.

[6] J-Sim. http://www.j-sim.org/.

[7] NeuroGrid. http://www.neurogrid.net/.

[8] OMNET++. http://www.omnetpp.org/.

[9] p2psim. http://pdos.csail.mit.edu/p2psim/.

[10] PeerSim. http://peersim.sourceforge.net.

[11] PlanetLab. http://www.planetlab.org.

[12] PlanetSim Website. http://www.planetsim.net.

[13] Prefuse. http://www.prefuse.org.

[14] The Network Simulator (NS-2).
http://www.isi.edu/nsnam/ns/.

[15] M. Baker and T. Giuli. Narses: A scalable flow-based
network simulator. Technical report, Stanford
University, November 2002.

[16] I. Baumgart, B. Heep, and S. Krause. OverSim: A
Flexible Overlay Network Simulation Framework. In
Proc. GI’07, pages 79–84, May 2007.

[17] M. Castro, P. Druschel, A. Kermarrec, and
A. Rowstron. SCRIBE: A large-scale and
decentralized application-level multicast
infrastructure. IEEE JSAC, 20(8):1489–1499, 2002.

[18] M. T. S. T. E. Condie and S. D. Kamvar. Simulating a
File Sharing P2P Network. Technical report, Stanford
University, 2002.

[19] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
S. I. Towards a Common API for Structured Peer-to
-Peer Overlays. In Proc. IPTPS’03, February 2003.

[20] P. Garćıa, C. Pairot, R. Mondéjar, J. Pujol,
H. Tejedor, and R. Rallo. PlanetSim: A New Overlay
Network Simulation Framework. In Proc. SEM’04,
pages 123–136, September 2004.

[21] W.-S. Ku, R. Zimmermann, C.-N. Wan, and H. Wang.
MAPLE: A Mobile Scalable P2P Nearest Neighbor
Query System for Location-based Services. In Proc.
ICDE’06, page 160, 2006.

[22] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The state of
peer-to-peer simulators and simulations. ACM
SIGCOMM Comp. Comm. Review, 37(2), April 2007.

[23] J. Pfeifer. Freenet Caching Algorithms Under High
Load. http://www.cs.usask.ca/classes/498/t1/
898/W7/P2/freenet.pdf.

[24] A. Rodriguez, C. Killian, and S. Bhat. MACEDON:
Methodology for Automatically Creating, Evaluating,
and Designing Overlay Networks. In Proc. NSDI’04,
March 2004.

[25] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Proc. IFIP/ACM
International Conference on Distributed Systems
Platforms, volume 2218, pages 329–350, November
2001.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc.
SIGCOMM ’01, pages 149–160, New York, NY, USA,
2001. ACM Press.

[27] W. Wang and G. Zeng. A Generic Trust Overlay
Simulator for P2P Networks. In Proc. PRDC’06,
pages 401–402, December 2006.

[28] Y. Wu, M. Li, and W. Zheng. ONSP: Parallel Overlay
Network Simulation Platform. In Proc. PDPTA’04,
pages 1147–1153, June 2004.

[29] B. Yang and H. Garcia-Molina. Designing a super-peer
network. In Proc. ICDE’03, pages 49–60, March 2003.

[30] W. Yang and N. Abu-Ghazaleh. GPS: a general
peer-to-peer simulator and its use for modeling
BitTorrent. In Proc. MASCOTS’05, pages 425–432,
September 2005.

[31] H. Zhang, A. Goel, and R. Govindan. Incrementally
improving lookup latency in distributed hash table
systems. In Proc. SIGMETRICS ’03.

