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Abstract

Abstract.
In the history of mechanics, there have been two points of view for studying mechanical

systems: The Newtonian and the Cartesian. The Cartesian point of view affirms (by using
the modern mathematical language) that it is possible to solve the dynamics problem inside
the configuration space. In this paper we develop the Cartesian approach for mechanical
systems with constraints which are linear with respect to velocity. The obtained results are
illustrated into the study of the three problem: the behavior of the heavy rigid body in the
Suslov and Veselov case and the rattleback . The first problem concerns the inertial rotation
of a rigid body about a fixed point with a non-holonomic constraints, i.e., the projection
of the angular velocity on a certain straight line fixed to the body is equal to zero. The
Veselov problem is analogous to the Suslov problem but in this case the projection of the
angular velocity is in the fixed exes in the space. The thirst problem consist into the study
a convex asymmetric rigid body rolling without sliding on a horizontal plane (rattleback).

Key words: Non-holonomic systems, Cartesian approach, Newtonian approach, con-
straint, differential equation, Lagrangian systems, Suslov’s problem, Veselov’s problem,
rattleback, .
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1. Introduction
In the history of mechanics, there have been two points of view for studying mechanical

systems: The Newtonian and the Cartesian. In ”Philosophiae Naturalis Principia Mathe-
matica” (1687), Newton considers that movements of celestial bodies can be described by
differential equations of the second order. To determine their trajectory, it is necessary to
give the initial position and velocity.

Descartes proposed that the behavior of the celestial bodies be studied from another
point of view. These ideas were stated in ”Principia Philosophiae” (1644) and in ”Discours
de la métode” (1637). According to Descarte the understanding of cosmology starts from
acceptance of the initial chaos, whose moving elements are ordered according to certain
fixed laws and form the Cosmo. He consider that the Universe is filled with a tenuous fluid
matter (ether), which is constantly in a vortex motion. This motion moves the largest
particle of matter of the vortex axis, and they subsequently form planets. Then, according
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to what Descartes wrote in his ”Treatise on Light”, ”the material of the Heaven must be
rotate the planets not only about the Sun but also about their own centers...and this will
hence form several small Heavens rotating in the same direction as the great Heaven.”

Newton gave a simpler, but stronger, argument against Descarte’s theory. If the
Descarte’s ideas is correct, bodies are carried by the ether, and the equations of motion
are consequently of first order: the velocity of a particle depend only on its position.
However, Newton noted that some of the observed comets move in a direction opposite to
that of all the planets [Kozlov1].

In the modern scientific literature the study of the Descarte ideas we can find in the
monographic of V.V. Kozlov in which the author said ”In the present book, one more
attempt is made to rehabilitate Descarte’s vortex theory...” . In this books, Kozlov affirms
”solving dynamics problem is possible inside the configuration space”.

As we observe , the equation of motion in the Descartes theory must be of the first
order

(1.1) ẋ = v(x)

Hence, to determine the trajectory from Descartes’s point of view it is necessary to give
only the initial position. Descarte gave no principles for constructing the field v for different
mechanical systems.

A main achievement of Newton was perceiving that the dynamics of real systems are
described by second-order differential equations. To deduce the equations of motion to the
investigation of a dynamics systems (i.e., to first order equation), it is necessary to double
the dimension of the position space and to introduce the auxiliary phase space. However,
we are interested not in the phase trajectories themselves but in their projection on the
configuration space.

Definition
The vector field (1.1) we shall call the Cartesian vector field.
The aim of the present paper is to develop the Descarte ideas for mechanical systems

with constraints which are linear with respect to the velocity.

2. CONSTRUCTION THE CARTESIAN VECTOR FIELD
FOR NON-HOLONOMIC SYSTEM

Firstly we shall introduce the following notation and concept.
LetQ be a smooth manifold of the dimension N with local coordinates x = (x1, ..., xN )

and equipped by the Riemann metric G = (Gkj(x)).
By ξ(Q), Λ(Q), ∇ we denote respectively the Lie algebra of vector fields on Q and

the algebra of the 1-form on Q, and the connection:

∇ : ξ(Q)× ξ(Q) 7−→ ξ(Q)
(u, v) 7−→ ∇uv

which is R lineal with respect to v and C∞ lineal with respect to u and is compatible with
metric G, i.e., ∇uG(v, w) = 0, ∀u, v, w ∈ ξ(Q).
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Let v ∈ ξ(Q) be a vector field:

v = det




Ω1(∂1) Ω1(∂2) . . . Ω1(∂N ) 0
...

... . . .
...

...
ΩM (∂1) ΩM (∂2) . . . ΩM (∂N ) 0

ΩM+1(∂1) ΩM+1(∂2) . . . ΩM+1(∂N ) λM+1

...
... . . .

...
...

ΩN (∂1) ΩN (∂2) . . . ΩN (∂N ) λN

∂1 ∂2 . . . ∂N 0




,

where ∂k = ∂
∂xk , we shall consider that Ω1, Ω2, .....ΩM , M ≤ N − 1 are given 1-forms,

and ΩM+1, ΩM+2, .....ΩN , are arbitrary 1-forms on Q. Furthermore, we assume that they
are pointwise independent i.e.

Υ ≡ Ω1 ∧ Ω2... ∧ ΩN (∂1, ∂2, ..., ∂N ) 6= 0,

The functions λj , j = M + 1, ..., N are arbitrary functions on Q
The vector field v has the following properties
1. {

Ωj(v) = 0, j = 1, 2, ..,M

Ωj(v) = −Υλj , j = M + 1, .., N.

2.The vector v(x) = (v1(x), ..., vN (x))T can be represented as follows

v(x) = M−1λ,

where M =
(
Ωj(∂k)j,k=1,..N

)
, λ = −Υ(0, .., 0, λM+1, ..λN ). or, what is the same,

(2.1) v =
N∑

j=M+1

λjXj

where Xj , j = M + 1, ..., N constitute a maximal set of independent vector fields on Q
satisfying the constraints, in the sense that the components of Xj satisfy the equations

Ωj(Xk) = 0, j = 1, .., M, k = M + 1, .., N

3. Let σ be the 1-form associated with the vector field v, i.e.,

σ = (v(x), dx) ≡
N∑

j,k=1

Gjk(x)vj(x)dxk ≡
N∑

k=1

pkdxk

then the 2-form dσ :

dσ =
1
2

N∑

j,k=1

ajk(x)Ωj ∧ Ωk,
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where A = (ajk) is a matrix such that

ajk = (−1)j+k−1 1
Υ

dσ ∧ Ω1 ∧ ... ∧ Ω̂k.... ∧ Ω̂j .... ∧ ΩN (∂1, ∂2, ..., ∂N )

Ω̂j , Ω̂k means that these elements are omitted.
It is clear that the contraction of dσ along v is

ιvdσ =
N∑

j=1

ΛjΩj ,

where
Λ ≡ col(Λ1, Λ2, ..., ΛN ) = AT λ.

We shall analyze the differential equations

(2.2) ẋ = M−1λ =
N∑

j=M+1

λjXj

under the conditions

(2.3)
{

Λj = 0, j = M + 1, .., N

Υ = Ω1 ∧ Ω2.... ∧ ΩN (∂1, ∂2, ..., ∂N ) 6= 0

In particular, for a constrained particle in R3 we have that the first condition in (2.3) holds
if

Ω1(rotv) = 0.

Corollary 2.1
For the case when M = N − 1 the vector field v takes the form

v = λNdet




Ω1(∂1) Ω1(∂2) . . . Ω1(∂N )
...

... . . .
...

ΩM (∂1) ΩM (∂2) . . . ΩM (∂N )
ΩM+1(∂1) ΩM+1(∂2) . . . ΩM+1(∂N )

...
... . . .

...
ΩN−1(∂1) ΩN−1(∂2) . . . ΩN−1(∂N−1)

∂1 ∂2 . . . ∂N




,

where λN is an arbitrary function.
The conditions (2.3) hold if and only if

Υ = Ω1 ∧ Ω2.... ∧ ΩN (∂1, ∂2, ..., ∂N ) 6= 0

where ΩN is an arbitrary 1-form.
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Proposition 2.1 The differential equations

ẋ = v(x), x ∈ X

are invariant relationship of the Lagrangian equations with Lagrangian function

L0 =
1
2
||ẋ− v(x)||2 ≡ 1

2

N∑

j,k=1

Gkj(x)(ẋj − vj(x))(ẋk − vk(x))

In fact, by derivation we deduce that ∇ẋ(ẋ− v(x)) = 0, or,

∇ẋ(∂ẋL0) = 0,

which are equivalent to Lagrangian equations with the Lagrangian function L0 given above.
It is easy to show that these equations admits the representation

∇ẋ(∂ẋj T ) = ω(∂j) +∇ẋ−v(x)pj

where
T =

1
2
||ẋ||2, pj = σ(∂j)

ω = d
||v||2

2
+ ιvdσ,

σ is the 1- form associated with the vector field v.
We shall study the case when (2.2) and (2.3) hold. The differential equations which de-

scribe the behavior of such mechanical systems under these restrictions can be represented
as follows

(2.4) ∇ẋ(∂ẋkT ) =
∂ 1

2 ||v||2
∂xk

+
M∑

j=1

ΛjΩj(∂k), k = 1, 2, ..N,

and can be interpreted as the equations of motion of non-holonomic mechanical sys-
tems with an active potential field of force with potential U :

U =
1
2
||v(x)||2 + U0, U0 = const.

and with the reactive forces with the components

(
M∑

j=1

ΛjΩj(∂1),
M∑

j=1

ΛjΩj(∂2), ....,
M∑

j=1

ΛjΩj(∂N )),
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generated by the constraints

Ωj(ẋ) ≡
N∑

k=1

Ωj(∂k)ẋk = 0, j = 1, 2, ..N.

Corollary 2.2
If 




M = N − 1
Ωj = dfj(x), j = 1, 2, ..., N − 1
ΩN = dfN

Then the equations (2.2)+(2.3) and (2.4) take the form respectively

(2.5)





ẋ = λN det




df1(∂1) . . . df1(∂N )
...

...
dfN−1(∂1) . . . dfN−1(∂N )

∂1 . . . ∂N




Υ = df1 ∧ df2.... ∧ dfN (∂1, ∂2, ..., ∂N ) 6= 0

(2.6) ∇ẋ(∂ẋkT ) =
∂ 1

2 ||v||2
∂xk

+
N−1∑

j=1

λNaNj(x)dfj(∂k).

where λN is an arbitrary function.
Definition
The studying of the behavior of the non-holonomic systems by using the equations

(2.2)+(2.3) or (2.4) we called Cartesian and Lagrangian approach respectively [Sad, Ram]
and by applying the equations deduced from the D’Alembert-Lagrange Principle we called
the Classical approach.

With respect to the proposed us approach we have the following conjectures.
Conjecture
The Cartesian and Lagrangian approach are equivalent.
This conjecture supported the following facts. First, the solutions of (2.2)+(2.3)

are solutions of (2.4) in view of proposition 2.1. Second, the solutions of the equations
(2.4) depend on the 2N − M initial conditions. The solutions of (2.2) depend on N
initial conditions and N −M functions which are solutions of the linear partial differential
equations of first order (2.3).

To illustrate this conjecture we study the following example.

Example 1

A NON-HOLONOMICALLY CONSTRAINED PARTICLE IN R3.
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Consider a particle with the Lagrangian (3.4) and non-holonomic constraints

Ω1(ẋ) ≡ ẋ + a(z)ẏ = 0

This instructive academic example, in the particular case when a(z) = z, due to
Rosenberg [Ros]. This example was also used to illustrate the theory in Bates and Sniatycki
[Bates]. The Cartesian approach in this case produce the following vector field v :

(2.7) v = λ2(a(z)∂x − ∂y)− λ3∂z = λ2X2 + λ3X3

and condition (2.3) for this case takes the form

(2.8) λ2Ω1(rotv) =
1
2
∂z((1 + a2)λ2

2) + (a∂xλ3 − ∂yλ3)λ2 = 0.

The vector field X2 and X3 are such that

(2.9)





X2 = a(z)∂x − ∂y

X3 = ∂z

[X3, X2] = ∂za(z)∂x

We shall study the case when in (2.8)

λ2 =
A√

a2 + 1
, λ3 = b2(z),

for A an arbitrary constant and b2 an arbitrary function.
The equations generated by the vector field v in this case are





ẋ =
a(z)A√
1 + a2(z)

ẏ = − A√
1 + a2(z)

ż = −b2(z)

Hence the all trajectories of these equations are the following

(2.10)





x = x0 −A

∫ z

z0

a(z)dz

b2(z)
√

1 + a2(z)

y = y0 −A

∫ z

z0

dz

b2(z)
√

1 + a2(z)

t = t0 −
∫ z

0

dz

b2(z)
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The equation (2.4) may be rewritten as





ẍ = ∂z(
Aa(z)√
a2(z) + 1

)

ÿ = a(z)∂z(
Aa(z)√
a2(z) + 1

)

z̈ = ∂zb2(z)

Corollary 2.3
All the trajectories of the equation of motion of the constrained Lagrangian system

< R3, L =
1
2
(ẋ2 + ẏ2 + ż2)− U(z), {ẋ + a(z)ẏ = 0} >

can be obtained from (2.10) [Sad].
In this example the Cartesian, the lagrangian and Classical approach coincide.
With respect to the arbitrary 1-form we posed the following problem.
Problem
Determine the 1-form ΩM+1, ...ΩN from the condition that the smallest Lie algebra of

vector fields on Q that contains the vector field XM+1, ..., XN is finite dimensional.
If we assume that

X1, X2, .., XM , XM+1, .., XN , ..., XS

is a basis of this Lie algebra then

[Xj , Xk] =
S∑

m=1

Cm
jkXm, j, k = 1, 2, ..S

where Xj ∈ ξ(Q), j = 1, 2, ..S and [X, Y ] is the Lie brackets of vector field X and Y, and
Cm

jk are the structure constants.
When the algebra is three dimensional then from the Bianchi representation we obtain:

(2.11)





[X1, X2] = aX2 + b3X3

[X2, X3] = b1X1

[X3, X1] = b2X2 − aX3

where a, b1, b2, b3 are certain constants
Example 2
In the example 1 we obtain a finite Lie algebra if in (2.9) the function a is such that

1) a(z) = z, 2) a(z) = exp z, 3) a(z) = cos z,

A brief calculation shows that for the first case
{

X1 = ∂z, X2 = z∂x − ∂y, X3 = ∂x

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0
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which correspond to the Heisenberg algebra [Bloch].
For the second case we have

{
X1 = ∂z, X2 = exp z∂x − ∂y, X3 = ∂y

[X1, X2] = X3 + X1, [X1, X3] = 0, [X2, X3] = 0

For the case when a(z) = cos z by introducing the vector field X1, X2, X3, X4 :





X1 = − sin z∂x − ∂y

X2 = cos z∂x − ∂y

X3 = ∂z

X4 = ∂y

we deduce the four dimensional Lie algebra:




[X2, X3] = X3 + X4

[X3, X1] = −X2 −X4

[X2, X1] = 0, [X2, X4] = 0, [X3, X4] = 0, [X1, X4] = 0

3. CARTESIAN APPROACH FOR NON-HOLONOMIC SYSTEM
WITH THREE DEGREE OF FREEDOM

AND ONE CONSTRAINTS .

The case when dimQ = 3 and M = 1 is of specific interest. We consider a natural
mechanical system with configuration space Q and kinetic energy

T =
1
2

3∑

k,j=1

Gkj(x)ẋj ẋk

Obviously, in this case the 1-form ιvdσ can be represented as follow

ιvdσ = Λ1Ω1 + Λ2Ω2 + Λ3Ω3

where Λj , j = 1, 2, 3 :





Λ1 = Ω2 ∧ Ω3(v, rotv)
Λ2 = λ3Ω1(rotv)
Λ3 = −λ2Ω1(rotv)

rotv =
1√

detG

(
(∂yp3 − ∂zp2)∂x + (∂zp1 − ∂xp3)∂y + (∂xp2 − ∂yp1)∂z,

)

pk =
3∑

j=1

Gkjv
j , k = 1, 2, 3
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The system (2.2)+(2.3) take the form respectively

(3.1) ẋ = [Ω1×, λ2Ω3 − λ3Ω2] ≡ λ2X2 + λ3X3

(3.2)
{

Υ 6= 0
Ω1(rotv) = 0

where Ωj(x) = (Ωj(∂x),Ωj(∂x)Ωj(∂x)), j = 1, 2, 3; [ ×, ] is the vector product on R3.
Definition
The vector field v we call the Kummer vector field if

[v × rotv] = 0

It is easy to show that the equations of motion (2.4) for N = 3 under the condition
that v is a Kummer a vector field can be represented in Lagrangian form.

Example 2

HEAVY RIGID BODY IN THE SUSLOV CASE

In this section we study one classical problem of non-holonomic dynamics formulated
by Suslov [Koz2]. In this problem we consider the rotational motion of a rigid body around
a fixed point and subject to the non-holonomic constraints (a, ω) = 0 where ω is a body
angular velocity and a is a constant vector. Suppose the body rotates in an force field
with potential U(γ1, γ2, γ3). Applying the method of Lagrange multipliers we write the
equations of motion in the form





Iω̇ = [Iω × ω] + [γ × ∂U

∂γ
] + µa

γ̇ = [γ × ω]
(a, ω) = 0

Where
I = diag(I1, I2, I3),
γ = (γ1 = sin z sinx, γ2 = sin z cosx, γ3 = cos z)

I1, I2, I3 are the inertial moment of the body.
If we assume that the vector a = (0, 0, 1) [Koz2], then

(3.3)





I1ω̇1 = γ3∂γ2U − γ2∂γ3U

I2ω̇2 = γ1∂γ3U − γ3∂γ1U

(I1 − I2)ω1ω2 + γ2∂γ2U − γ2∂γ1U + µ = 0
γ̇1 = −γ3ω2

γ̇2 = γ3ω1

γ̇3 = γ1ω2 − γ2ω1
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The above system has two independent first integrals

K1 =
1
2
(I1ω

2
1 + I2ω

2
2)− U(γ1, γ2, γ3)

K2 = γ2
1 + γ2

2 + γ2
3

By the Jacobi’s theorem about the last multiplier, if there exits a third independent first
integral K3 which is functionally independent together with K1 and K2, then the Suslov
problem is integrable by quadratures [Koz2, Mac]

To determine the integrable cases of the Suslov problem seems interesting the following
result which we can prove after straightforward calculations.

Proposition 3.1
Let us suppose that the potential function U in (3.3)is determine as follows

(3.4) U =
1

2I1I2
(I1µ

2
1 + I2µ

2
2)− h

where µ1, µ2are solutions of the partial differential equations

(3.5) γ3(
∂µ1

∂γ2
− ∂µ2

∂γ1
)− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
= 0

Then the equations (3.3)+(3.4) admits the first integrals

(3.6) I1ω1 = µ2, I2ω2 = −µ1

The aim of this apartat is to propose the Cartesian approach for heavy rigid body in
the Suslov case.

Let us suppose that Q = SO(3), with the Riemann metric

G =




I3 I3 cos z 0
I3 cos z (I1 sin2 x + I2 cos2 x) sin2 z + I3 cos2 z (I1 − I2) sin x cosx sin z

0 (I1 − I2) sin x cos x sin z I1 cos2 x + I2 sin2 x




detG = I1I2I3 sin2 z,

The given 1-form is the following Ω1 = dx + cos zdy. By choosing the 1-form Ω2, Ω3

as follow
Ω2 = dy, Ω3 = dz

we obtain that Υ = 1. Hence the vector field v is such that

v = cos λ2(z ∂x − ∂y)− λ3∂z = λ2X2 − λ3X3

The equations (3.1) and conditions(3.2) take the form respectively

(3.7)





ẋ = cos z λ2,

ẏ = −λ2,

ż = −λ3,
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(3.8) Ω1(rotv) = ∂zp2 − ∂yp3 + cos z∂xp3 = 0

where

(3.9)





rotv =
1√

detG
(∂zp2 − ∂yp3, ∂xp3, −∂xp2)

pk =
∂T

∂ẋk
|ẋ=v

From (3.9) we deduce that



− I1I2λ3 = I1p3 + (I2 − I1)(p3 cos x +

p2 sinx

sin z
)

I1I2 sin zλ2 =
I1p2

sin z
+ (I2 − I1) sin x(p3 cos x +

p2 sinx

sin z
)

By introducing the change
{

p2 = sin z(µ2 sin x− µ1 cos x)
p3 = µ2 cosx + µ1 sin x,

we obtain that the system (3.7)and equation (3.8) admit the representation respec-
tively

(3.10)





ẋ =
cot z

I1I2
(I1µ1 cosx− I2µ2 sin x),

ẏ =
−1

I1I2 sin z
(I1µ1 cos x− I2µ2 sin x)

ż =
1

I1I2
(I1µ1 sinx + I2µ2 cosx),

(3.11) sin x(sin z∂zµ2 + cos z∂xµ1) + cos x(cos z∂xµ2 − sin z∂zµ1 − ∂yµ2) = 0

Clearly,

||v||2 =
1

I1I2
(I1µ

2
1 + I2µ

2
2)

Now we shall study the particular case when (3.11) holds in view of the relations

(3.12)
{

tan z∂zµ2 = −∂xµ1

∂xµ2 = tan z∂zµ1

From the compatibility conditions we obtain the following partial differential equation

(3.13) sin2 z cos z
∂2µj

∂z∂z
+ cos3 z

∂2µj

∂x∂x
+ sin z

∂µj

∂z
= 0, j = 1, 2
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Corollary 3.1
Let µ1 and µ2 are solutions of the system (3.12), then the function F = µ1 + ıµ2 is

holomorphic function on the complex variable w = γ2 + ıγ1 = eıx sin z.
In fact, after the change u = ln sin z from (3.12) we deduced the Cauchy-Riemann

equations
{

∂uµ2 = −∂xµ1

∂xµ2 = ∂uµ1

i.e., the function
F (u + ıx) = F (ln w)

is an holomorphic function, hence
{

µ1 = <F = ∂γ2S = ∂γ1Ψ,

µ2 = =F = ∂γ1S = −∂γ2Ψ

as a consequence we obtain that the functions
{

I1ω1 = <F (ln(γ2 + ıγ1))
I2ω2 = −=F (ln(γ2 + ıγ1))

are first integral of (3.3)+(3.4).
Corollary 3.2
If I1 = I2 then Ψ is a first integral of (3.3) and the function U we determine as follow

U = |F (ln(γ2 + ıγ1))|2

It is easy to show that the solutions of the equations (3.10) in this case are such that




∫
d(ln(γ1 + ıγ2))
F (ln(γ1 + ıγ2))

= τ − τ0

γ3 =
√

1− γ2
1(τ)− γ2

2(τ)

t = t0 +
∫

dτ√
1− γ2

1(τ)− γ2
2(τ)

Clearly, if µ1, µ2 satisfies the Cauchy-Riemann condition then they are solutions of
the Laplace equation

∂2µj

∂u∂u
+

∂2µj

∂x∂x
= 0, j = 1, 2.

Hence, if

(3.14) µj = Xj(x)Yj(u), j = 1, 2

then X and Y are solution of the second ordinary differential equation respectively

(3.15) X
′′
j (x) + ν2Xj(x) = 0,

13



and

(3.16) Y
′′
j (u)− ν2Yj(u) = 0, j = 1, 2

where ν is a real constant.
Corollary 3.3
Let µ1 and µ2 are solutions of the system (3.13), then

∂2µj

∂u∂u
− u2 + 1

u− u3

∂µj

∂u
+

u2

(u2 − 1)2
∂2µj

∂x∂x
= 0, u = cos z, j = 1, 2

If we represent µj by the formula (3.16) then X is a solution of the differential equation
(3.17). and Y is a solution of the Fuchsian equation

(3.17) Yj
′′(u)− u2 + 1

u− u3
Yj
′(u)− ν2u2

(u2 − 1)2
Yj(u) = 0, j = 1, 2

The proof we obtain after the calculations from (3.19), after the change u = cos z.
Analogously we can prove the following assertion
Corollary 3.4
Let µ1 and µ2 are solutions of the system (3.13), then its are solutions of the partial

differential equations

∂2µj

∂u∂u
+

1
u

∂µj

∂u
+

1
u2

∂2µj

∂x∂x
= 0, u = sin z, j = 1, 2

Hence, if (3.14) holds then X satisfies (3.15) and Y is a solution of the Euler ordinary
differential equation

(3.18) u2Yj
′′(u) + uYj

′(u)− ν2Yj(u) = 0, j = 1, 2

where ν is real constant.
Proposition 3.2
The functions {

I1ω1 = X2(x)Y2(u)
I2ω2 = −X1(x)Y1(u)

where X1, X2 are solutions of (3.15) and Y1, Y2 are solutions of (3.16) or (3.17) or (3.18),
are the first integrals of the system (3.3)+(3.4).

Denoting by γ1 = sin z sin x, γ2 = sin z cos x, γ3 = cos z from (3.10) and (3.11) we
obtain the relations respectively

(3.19)





γ̇1 =
I1

I1I2
µ1γ3

γ̇2 =
I2

I1I2
µ2γ3

γ̇3 =
−1
I1I2

(I1µ1γ1 + I2µ2γ2)
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sin z(γ3(
∂µ1

∂γ2
− ∂µ2

∂γ1
)− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
)− cos x∂yµ2 − sinx∂yµ1 = 0

We shall study only the case when

µj = µj(x, z), j = 1, 2

Hence, we obtain the equation (3.5).
By compare (3.19) with (3.3) we deduce that

(3.20) I1ω1 = µ2, I2ω2 = −µ1

Corollary 3.5
Let µ1, µ2 are such that

µj =
∂S(γ1, γ2)

∂γj
, j = 1, 2

then the potential function (3.4) and first integrals are




U =
1

2I1I2
(I1(

∂S

∂γ1
)2 + I2(

∂S

∂γ2
)2)− h

I1ω1 =
∂S

∂γ2
,

I2ω2 = − ∂S

∂γ1
,

The following particular cases produces the well known integrable cases[Koz2].

Suslov subcase

If
S = C1γ1 + C2γ2, Cj = const, j = 1, 2

then {
µ1 = C2, µ2 = C1

U = const.

hence we obtain the Suslov subcase
The integration of the equations (3.19) produce the following solutions





ω1 =
C2

I1
, ω2 = −C1

I2

γ1 =
C2I2√

I2
1C2

1 + I2
2C2

2

sin β sin(

√
I2
1C2

1 + I2
2C2

2

I1I2
t + α) +

I1C1 cos β√
I2
1C2

1 + I2
2C2

2

γ2 =
C1I1√

I2
1C2

1 + I2
2C2

2

sin β sin (

√
I2
1C2

1 + I2
2C2

2

I1I2
t + α)− I1C1 cos β√

I2
1C2

1 + I2
2C2

2

γ3 = sin β cos((

√
I2
1C2

1 + I2
2C2

2

I1I2
t + α)
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where C1, C2, α, β, are the arbitrary real constants.

Kharlamova-Zabelina subcase

If
S =

2
3
√

I1C2
1 + I2C2

2

(
√

h̃ + C1γ1 + C2γ2)3 +
C

2C1I1
γ1 − C

2C2I2
γ2

where h̃, C1, C2, C are arbitrary constants, then





µ1 =
C1√

I1C2
1 + I2C2

2

√
h̃ + C1γ1 + C2γ2 +

C

2C1I1

µ2 =
C2√

I1C2
1 + I2C2

2

√
h̃ + C1γ1 + C2γ2 − C

2C2I2

U = h̃ + C1γ1 + C2γ2

As a consequence we deduce the Kharlamova-Zabelina subcase.
The solutions of the equation (3.19) give the following solutions





I1ω1 =
C2√

I1C2
1 + I2C2

2

√
h̃ + C1γ1 + C2γ2 − C

2C2I2
,

I2ω2 = − C1√
I1C2

1 + I2C2
2

√
h̃ + C1γ1 + C2γ2 − C

2C1I1
,

γ1 =
I1C1(τ2 + C3) + C2(CAτ + C4)

I1C2
1 + I2C2

2

= γ1(τ, C1, C2, C3, C4)

γ2 =
I2C2(τ2 + C3)− C1(CAτ + C4)

I1C2
1 + I2C2

2

= γ2(τ, C1, C2, C3, C4)

γ3 =
√

1− γ2
1(τ, C1, C2, C3, C4)− γ2

2(τ, C1, C2, C3, C4) ≡
√

P4(τ, C1, C2, C3, C4)

t = t0 +
I1I2

2

∫
dτ√

P4(τ, C1, C2, C3, C4)

where 4C1C2A = I1C
2
1 + I2C

2
2 , and P4 is a polynomial of four degree in τ.

Kozlov subcase

If we suppose that I1 = I2 and




S = −2Cx +
∫

D(γ2
1 + γ2

2)d(γ2
1 + γ2

2)

D2(u) =
hu2 +

√
1− uu− C2

u2

where h and C are arbitrary real constant.
Hence,
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



µ1 = − γ2C

γ2
1 + γ2

2

+ γ1D(γ2
1 + γ2

2)

µ2 =
γ1C

γ2
1 + γ2

2

+ γ2D(γ2
1 + γ2

2)

U = h +
√

1− γ2
1 − γ2

2 = h + γ3

which correspond to the Kozlov subcase.
The equations (3.10) in this case take the form:

(3.21)





ẋ =
C cos z

sin2 z

ẏ =
−C

sin2 z

ż =
(γ2

1 + γ2
2)D(γ2

1 + γ2
2)

sin z

which are easy to integrate.
The solutions of the equation of motions are:





ω1 =
γ1C

γ2
1 + γ2

2

+ γ2D(γ2
1 + γ2

2)

ω2 =
γ2C

γ2
1 + γ2

2

− γ1D(γ2
1 + γ2

2)

x = x0 + C

∫
γ3dγ3

(1− γ2
3)2D(1− γ2

3)
= x0 + C

∫
γ3dγ3√

(1− γ2
3)P4(γ3, h, C)

y = y0 − C

∫
dγ3

(1− γ2
3)2D(1− γ2

3)
= y0 − C

∫
dγ3√

(1− γ2
3)P4(γ3, h, C)

t = t0 + I1I2

∫
dγ3√

P4(γ3, h, C)

P4(γ3, h, C) ≡ hγ4
3 − 2γ3

3 − 2hγ2
3 + 2γ3 + h− C2

where x0, y0, h, C, t0 are arbitrary constants

Tisserand subcase

Another interesting solution of the equation (3.5) are




µ1 =
√

h1 + a1(γ2
3 + γ2

2) + b1γ2
1 + f1(γ1)

µ2 =
√

h2 + a2(γ2
3 + γ2

1) + b2γ2
2 + f2(γ2)

which produce the following potential function U :

U = I1h1 + I2h2 +(I1b1 + I2a2)γ2
1 +(I1a1 + I2b2)γ2

2 +(I1a1 + I2a2)γ2
3 + I1f1(γ1)+ I2f2(γ2)
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where aj , bj , hj , j = 1, 2 are arbitrary real constants and fj , j = 1, 2 are arbitrary func-
tions.

The case when fj(γj) = αjγj , j = 1, 2 was studied in [Okuneba], where αj , j = 1, 2
are real constants.

The case when fj = 0, j = 1, 2 is well known as Tisserands case [Koz2].

After integration the equation (3.19) in the Tisserand case we obtain the following
solutions





I1ω1 =
√

h2 + a2(γ2
3 + γ2

1) + b2γ2
2

I2ω2 = −
√

h1 + a1(γ2
3 + γ2

2) + b1γ2
1

γ1 =
√

h1 + a1

a1 − b1
sin(

√
a1 − b1I1τ + C1) = γ1(τ)

γ2 =
√

h2 + a2

a2 − b2
sin(

√
a2 − b2I2τ + C2) = γ2(τ)

γ3 =
√

1− γ2
1(τ)− γ2

2(τ)

t = t0 + I1I2

∫
dτ√

1− γ2
1(τ)− γ2

2(τ)

To conclude the construction the Cartesian approach for heavy rigid body in the
Suslov case we analyze the case when v is a Kummer vector field.

Kummer subcase

In view of (3.9) we obtain that v is a Kummer vector field if

(3.22)





∂zp2 − ∂yp3 = ν cos θλ2

∂xp3 = νλ2

∂xp2 = −νλ3

Hence we deduce that if

I1 = I2, ν = 0

then the functions p2, p3 : {
p2 = C = const.

p3 = λ3(z),

are the solutions of (3.22). By considering the relations between p2, p3 and µ1, µ2 :

µ1 = p3 sin x− p2

sin z
cosx ≡ λ3(z) sin x− C

sin2 z
γ2

µ2 = p3 cos x +
p2

sin z
sin x ≡ λ3(z) cos x +

C

sin2 z
γ1.
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By choosing
λ3 = sin zD(sin2 z)

we obtain the Kozlov case given above.
To conclude we have the following assertion.
Proposition 3.3
The Cartesian approach for the heavy rigid body in the Suslov case produce the first

integrals (3.6).

Example 3.

HEAVY RIGID BODY IN THE VESELOV CASE
In this example we study the problem of non-holonomic dynamics formulated by

Veselov in [Veselov] which in certain sense is opposite to the Suslov problem. In this
problem we consider the rotational motion of a rigid body around a fixed point and subject
to the non-holonomic constraints

(3.23) (γ, ω) ≡ ẏ + cos zẋ = 0

Suppose the body rotates in an force field with potential U(γ1, γ2, γ3). Applying the
method of Lagrange multipliers we write the equations of motion in the form





Iω̇ = [Iω × ω] + [γ × ∂U

∂γ
] + λγ

γ̇ = [γ × γ]

where I is a matrix such that I = diag(I1, I2, I3).
The Cartesian approach for this system produce the following equations:

(3.24)





ẋ = λ2

ẏ = − cos zλ2

ż = λ3

and

(3.25)
∂p3

∂x
− ∂p1

∂z
+ cos z(

∂p2

∂z
− ∂p3

∂y
) = 0

where




p1 = I3 sin2 zλ2

p2 = (I3 − I1 + (I1 − I2) cos2 x) cos z sin2 zλ2 + (I1 − I2) cos x sin x sin zλ3

p3 = (I2 sin2 x + I1 cos2 x)λ3 + (I2 − I1) sin x cosx sin z cos zλ2
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Hence

(3.26)





ω1 = γ2
λ3

sin z
− γ1γ3λ2

ω2 = −γ1
λ3

sin z
− γ2γ3λ2

ω3 = sin2 zλ2

Clearly, in this case

(3.27)
||v||2 =(I3 sin2 z + (I1 sin2 x + I2 cos2 x) cos2 z) sin2 zλ2

2+
(I2 sin2 x + I1 cos2 x)λ2

3 + 2(I2 − I1) cos x sin x cos z sin zλ2λ3 = 2(U + h)

or, what is the same




||v||2 = (Φ + (I1 − I2) cos x sin x cos zΨ)2 + (
γ2
1

I1
+

γ2
2

I2
+

γ2
3

I3
)I1I2I3Ψ2 = 2(U + h)

Φ =
√

I3 sin2 z + (I1 sin2 x + I2 cos2 x) cos2 z sin2 zλ2

Ψ =
√

I3 sin2 z + (I1 sin2 x + I2 cos2 x) cos2 zλ3

In particular if
pj = pj(x, z), j = 1, 2, 3.

I1 = I2

from (3.25)+(3.26) we obtain the equation

I3

I2

∂λ3

∂x
−

√
I3 sin2 z + I1 cos2 z

∂Φ
∂z

= 0,

for which the functions

(3.28) Φ = C = const., λ3 = λ3(z)

are its solutions.
Hence we easily deduced the proof of the following result
Proposition 3.4
Let us suppose that

U = U(γ3)

then the system (3.25)+(3.28) admits the following solutions




x = x0 − C

I3

∫
dγ3

(1− γ2
3)

√
I3 + (I1 − I3)γ2

3

√
2(U(γ3) + h)(1− γ2

3)− C2

y = y0 − C

I3

∫
γ3dγ3

(1− γ2
3)

√
I3 + (I1 − I3)γ2

3

√
2(U(γ3) + h)(1− γ2

3)− C2

t = t0 −
∫

dγ3√
2(U(γ3) + h)(1− γ2

3)− C2
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Clearly, in this case there exist the first integral

(I3 sin2 z + I1 cos2 z)ω2
3 = C2.

The proof follow from (3.26)+(3.28).
It is interesting to observe that from (3.25) after the change





λ2 cos z sin z =
cos z cosx ξ

I3 + ((I2 − I3) cos2 z
− cos z sin x η

I3 + ((I1 − I3) cos2 z

λ3 =
cos z cosx η

I3 + ((I1 − I3) cos2 z
+

cos z sin x ξ

I3 + ((I2 − I3) cos2 z

and by require that
pj = pj(x, z), j = 1, 2

we deduce the following equation

sinx(
∂xξ

1 + (α− 1) sin2 z
+ tan z∂zη) + cos x(

∂xη

1 + (β − 1) sin2 z
− tan z∂zξ) = 0,

where α = I3
I2

, β = I3
I1

. If α = β = 1 then this equation coincide with (3.11).
Finally it is interesting to observe that the construction the Cartesian approach for

the Federov case [Federov],i.e.,
(ω, γ) = a

it is necessary in the above example make the change y = Y + at, a = const..

4. CARTESIAN APPROACH FOR NON-HOLONOMIC SYSTEM
WITH FIVE DEGREE OF FREEDOM

AND TWO CONSTRAINTS
This case we shall illustrate in one of the interesting non-holonomic mechanical system:

the rattleback.
Example 4.

THE RATTLEBACK

The rattleback’s amazing mechanical behaviour is a convex asymmetric rigid body
rolling without sliding on a horizontal plane. It is known for its ability to spin in one
direction and to resist spinning in the opposite direction for some parameters values, and
for others values to exhibit multiple reversals. Basic references on the rattleback are [Wal,
Mar, Kar, Bor,Tsyg].

Introduce the Euler angles ψ, φ, θ using the principal axis body frame relative to an
inertial reference frame. These angles together with two horizontal coordinates x, y of the
center of mass are coordinates in the configuration space Q = SO(3)×R2 of the rattleback.
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The Lagrangian of the rattleback is computed to be

L =
1
2
(I1 cos2 ψ + I2 sin2 ψ + m(Γ1 cos θ − ζ sin θ)2)θ̇2

1
2
(I1 sin2 ψ + I2 cos2 ψ) sin2 θ) + I3 cos2 θ)φ̇2

+
1
2
(I3 + mΓ2

2 sin2 θ)ψ̇2 +
m

2
(ẋ2 + ẏ2)

+ m(Γ1 cos θ − ζ sin θ)Γ2 sin θθ̇ψ̇ + (I1 − I2) sin θ sinψ cosψθ̇φ̇

C cos θφ̇ψ̇ + mg(Γ1 sin θ + ζ cos θ)

where I1, I2, I3 are the principal moments of inertia of the body, m is the total mass of the
body,

Γ1 = ξ sin ψ + η cos ψ, Γ2 = ξ cosψ − η sin ψ

(ξ(θ, ψ), η(θ, ψ), ζ(θ, ψ)) are the coordinates of the point of contact relative to the body
frame.

The shape of the body is encoded by the functions ξ, η and ζ. The constraints are

(4.1)

{
ẋ− α1θ̇ − α2ψ̇ − α3φ̇ = 0

ẏ − β1θ̇ − β2ψ̇ − β3φ̇ = 0

where 



α1 = −(Γ1 sin θ + ζ cos θ) sin φ,

α2 = Γ2 cos θ sinφ + Γ1 cos φ,

α3 = Γ2 sin φ + (Γ1 cos θ − ζ sin θ) cos φ,

βk = −∂αk

∂φ
, k = 1, 2, 3

To determine the Cartesian approach of the Rattleback we first determine the vector
field v.

The 1-forms Ωj , j = 1, ..., 5 in this case are the following





Ω1 = dx− α1dθ − α2dψ − α3dφ,

Ω2 = dy − β1dθ − β2dψ − β3dφ,

Ω3 = dθ, Ω4 = dψ, Ω5 = dφ

Hence Υ = 1 and

(4.2.)





v = λ3X3 + λ4X4 + λ5X5

X3 = α1∂x + β1∂y + ∂θ

X4 = α2∂x + β2∂y + ∂ψ

X5 = α3∂x + β3∂y + ∂φ
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The rattleback in the Kummer case

We now proceed to the consideration of the particular case for which ξ, η and ζ are
constants. It is easy to show that under this consideration the vector field X1, X2, X3

generated a three dimensional Abelian Lie algebra.
It is evident that the rattleback equations of motion in this particular case formally

contain the equations of the heavy rigid body in the singular case

m → 0, mg → l, l 6= 0

Let (x1, x2, x3, x4, x5) be a new set of variables derived from x, , y, θ, ψ, φ by the
transformation 




ψ = x1

φ = x2,

θ = x3

y + ζ sin θ cosφ− Γ1 cos θ sin φ− Γ2 cosφ = x4

x + ζ sin θ sin φ + Γ1 cos θ cosφ− Γ2 sin φ = x5

The vector field v and the constraints on account of this change, take respectively the
form

(4.3)

v = a(x1, .., x5))∂x1 + b(x1, ..., x5)∂x2 + c(x1, ..., x5)∂x3{
ẋ4 = 0,

ẋ5 = 0
,

By the above transformation the Lagrangian function L is changed into a new Lagrangian

Ľ =
1
2

5∑

j,k=1

Gjk(x1, ..., x5)ẋj ẋk + mg(Γ1 sin θ + ζ cos θ),

where G = (Gjk) is the Riemann metric which is easy to calculate.
We shall now determine the Cartesian approach under the given conditions.
Proposition 4.1
The vector field v given by the formula (4.2) is a Kummer vector field.
Proof. In fact, by considering that in this case the 1-form associated to the vector

field v is the following





σ = p1dx1 + p2dx2 + p3dx3

pk =
5∑

j=1

Gjk(x)v(xj), k = 1, 2, .., 5
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then

ıvdσ =
5∑

j=1

Λjdxj





Λ1 = (
∂p1

∂x2
− ∂p2

∂x1
)b + (

∂p1

∂x3
− ∂p3

∂x1
)c

Λ2 = (
∂p2

∂x3
− ∂p3

∂x2
)c + (

∂p2

∂x1
− ∂p1

∂x2
)a

Λ3 = (
∂p3

∂x2
− ∂p2

∂x3
)b + (

∂p3

∂x1
− ∂p1

∂x3
)a

Λ4 = −∂p1

∂x4
a− ∂p2

∂x4
b− ∂p3

∂x4
c

Λ5 = −∂p1

∂x5
a− ∂p2

∂x5
b− ∂p3

∂x5
c

Let v(x) and rotv(x) are the following vectors

v(x) = (a, b, c)

rotv =
1√

detG
(
∂p3

∂x2
− ∂p2

∂x3
,

∂p1

∂x3
− ∂p3

∂x1
,

∂p2

∂x1
− ∂p1

∂x2
)

We have therefore that the equations (2.2)+(2.3) take the form respectively

(4.4)





ẋ1 = a(x1, x2, x3, C4, C5)
ẋ2 = b(x1, x2, x3, C4, C5)
ẋ3 = c(x1, x2, x3, C4, C5)

(4.5) [v × rotv(x)] = 0,

hence the constructed vector field is a Kummer vector field.

The rattleback in the Suslov case

We shall now consider the motion of the rattleback with the following set of comple-
mentary conditions 




ξ = const., η = const., ζ = const.

(Γ2
1 + Γ2

2)ζ = 0

ψ̇ + cos θφ̇ = 0
This subcase we call the Rattleback in the Suslov case.

Similarly to the above case we have that the vector field v and equations (3.27) takes
the form respectively

(4.6)

v = − cos x3b(x1, .., x5))∂x1 + b(x1, ..., x5)∂x2 + c(x1, ..., x5)∂x3



ẋ4 = 0,

ẋ5 = 0

ẋ1 + cosx3ẋ2 = 0

,
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(4.7)





∂p2

∂x1
b +

∂p3

∂x1
c = 0

(
∂p2

∂x3
− ∂p3

∂x2
)c + (

∂p2

∂x1
)a = 0

(
∂p3

∂x2
− ∂p2

∂x3
)b +

∂p3

∂x1
a = 0

Now the function p1, p2, p3 are such that




Γ2
1 + Γ2

2 = 0
p1 = 0
p2 = (I1 sin2 ψ + I2 cos2 ψ + mζ2) sin2 θb

p3 = (I1 − I2) sin θ sin ψb + (I1 sin2 ψ + I2 cos2 ψ + mζ2)c

and

(4.8)





ζ = 0
p1 = 0
p2 = (I1 sin2 ψ + I2 cos2 ψ + mΓ2

2) sin2 θb

p3 = ((I1 − I2) sin θ sin ψ −mΓ1Γ2 sin θ)b + (I1 sin2 ψ + I2 cos2 ψ + mΓ2
1)c

From these equations it is evident that in the case when
{

Γ2
1 + Γ2

2 = 0
I1 = I2

we have that
p2 = (I1 + mζ2) sin2 x3b, p3 = (I1 + mζ2)c

hence (4.5) are therefore satisfied by this functions if




sin2 x3b2 + c2 = K(x2, x3)

∂c

∂x2
− cosx3 ∂c

∂x1
=

∂ sin2 x3b,

∂x3

where K is an arbitrary function on the variables x2, x3.
Hence on taking

sin2 x3b2 = A(x2), c =
√

K(x2, x3)−A(x2) = c(x3)

we see that (4.5) hold. The equations generated by v in this case are




ẋ1 = −A cosx3

sin2 x3

ẋ2 = − A

sin2 x3

ẋ3 = c(x3)
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which contain as a particular case the system (3.21).

The Rattleback in the general case

For the general case, i.e., when the ξ, η and ζ are functions on the variables θ and ψ
the Cartesian approach produce the following equations

ẋk = v(xk), k = 1, 2, .., 5





5∑

j=1

(∂p1

∂xj
− ∂pj

∂x1
+ α2(

∂p4

∂xj
− ∂pj

∂x4
) + β2(

∂p5

∂xj
− ∂pj

∂x5
)
)
v(xj) = 0

5∑

j=1

(∂p2

∂xj
− ∂pj

∂x2
+ α3(

∂p4

∂xj
− ∂pj

∂x4
) + β3(

∂p5

∂xj
− ∂pj

∂x5
)
)
v(xj) = 0

5∑

j=1

(∂p3

∂xj
− ∂pj

∂x1
+ α1(

∂p4

∂xj
− ∂pj

∂x4
) + β1(

∂p5

∂xj
− ∂pj

∂x5
)
)
v(xj) = 0

where {
ψ = x1, φ = x2,

θ = x3, y = x4, x = x5

and v is given by the formula (4.2).
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